IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5455-d1102179.html
   My bibliography  Save this article

An Approach for Designing an Optimal CNN Model Based on Auto-Tuning GA with 2D Chromosome for Defect Detection and Classification

Author

Listed:
  • Nhat-To Huynh

    (Division of Industrial Engineering and Management, The University of Danang—University of Science and Technology, Danang 550000, Vietnam)

  • Duong-Dong Ho

    (Division of Industrial Engineering and Management, The University of Danang—University of Science and Technology, Danang 550000, Vietnam)

  • Hong-Nguyen Nguyen

    (Division of Industrial Engineering and Management, The University of Danang—University of Science and Technology, Danang 550000, Vietnam)

Abstract

Defect detection and classification on the final products are necessary for the manufacturers to ensure the quality of the final product before delivering it to the end customers. With rapid changes in manufacturing technologies, most of the companies have changed their operation methods toward industry 4.0. On this road, developing an automatic detection system based on the surface images can enhance the productivity and ensure the quality of the product. However, only a few studies have developed the models for solving this problem. Due to its complicated structure and parameters, designing an optimal convolution neural network (CNN) is still a challenge. Thus, this study aims to propose an autotuning genetic algorithm with two-dimension chromosomes for designing an optimal CNN model efficiently. In particular, a two-dimension chromosome is developed to represent a CNN’s structure and parameters. To enhance the searching process, the crossover rate and mutation rate are tuned automatically according to the generation. A two-dimension crossover method is proposed to create offspring for selecting the next population. In addition, a case of ceramic textile manufacturing is constructed to validate the proposed approach. The accuracy of the proposed approach is up to 95.5 percent on the testing dataset.

Suggested Citation

  • Nhat-To Huynh & Duong-Dong Ho & Hong-Nguyen Nguyen, 2023. "An Approach for Designing an Optimal CNN Model Based on Auto-Tuning GA with 2D Chromosome for Defect Detection and Classification," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5455-:d:1102179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5455/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5455/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haiyong Chen & Yue Pang & Qidi Hu & Kun Liu, 2020. "Solar cell surface defect inspection based on multispectral convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 453-468, February.
    2. Olatomiwa Badmos & Andreas Kopp & Timo Bernthaler & Gerhard Schneider, 2020. "Image-based defect detection in lithium-ion battery electrode using convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 885-897, April.
    3. Domen Tabernik & Samo Šela & Jure Skvarč & Danijel Skočaj, 2020. "Segmentation-based deep-learning approach for surface-defect detection," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 759-776, March.
    4. Hui Lin & Bin Li & Xinggang Wang & Yufeng Shu & Shuanglong Niu, 2019. "Automated defect inspection of LED chip using deep convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2525-2534, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Yu Hsu & Ju-Chien Chien, 2022. "Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 831-844, March.
    2. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    3. Feiyang Li & Nian Cai & Xueliang Deng & Jiahao Li & Jianfa Lin & Han Wang, 2022. "Serial number inspection for ceramic membranes via an end-to-end photometric-induced convolutional neural network framework," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1373-1392, June.
    4. Shuo Meng & Ruru Pan & Weidong Gao & Jian Zhou & Jingan Wang & Wentao He, 2021. "A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1147-1161, April.
    5. Zeqing Yang & Mingxuan Zhang & Yingshu Chen & Ning Hu & Lingxiao Gao & Libing Liu & Enxu Ping & Jung Il Song, 2024. "Surface defect detection method for air rudder based on positive samples," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 95-113, January.
    6. Yuanyuan Wang & Ling Ma & Lihua Jian & Huiqin Jiang, 2023. "Conductive particle detection via efficient encoder–decoder network," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3563-3577, December.
    7. Ruiyang Hao & Bingyu Lu & Ying Cheng & Xiu Li & Biqing Huang, 2021. "A steel surface defect inspection approach towards smart industrial monitoring," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1833-1843, October.
    8. Omid Davtalab & Ali Kazemian & Xiao Yuan & Behrokh Khoshnevis, 2022. "Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 771-784, March.
    9. Aidong Chen & Xiang Li & Hongyuan Jing & Chen Hong & Minghai Li, 2023. "Anomaly Detection Algorithm for Photovoltaic Cells Based on Lightweight Multi-Channel Spatial Attention Mechanism," Energies, MDPI, vol. 16(4), pages 1-15, February.
    10. Danqing Kang & Jianhuang Lai & Junyong Zhu & Yu Han, 2023. "An adaptive feature reconstruction network for the precise segmentation of surface defects on printed circuit boards," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3197-3214, October.
    11. Zhenxing Cheng & Hu Wang & Gui-Rong Liu, 2021. "Deep convolutional neural network aided optimization for cold spray 3D simulation based on molecular dynamics," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1009-1023, April.
    12. Saksham Jain & Gautam Seth & Arpit Paruthi & Umang Soni & Girish Kumar, 2022. "Synthetic data augmentation for surface defect detection and classification using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1007-1020, April.
    13. Feng Huang & Ben-wu Wang & Qi-peng Li & Jun Zou, 2023. "Texture surface defect detection of plastic relays with an enhanced feature pyramid network," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1409-1425, March.
    14. José M. Navarro-Jiménez & José V. Aguado & Grégoire Bazin & Vicente Albero & Domenico Borzacchiello, 2023. "Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2345-2358, June.
    15. Chiwu Bu & Tao Liu & Tao Wang & Hai Zhang & Stefano Sfarra, 2023. "A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images," Energies, MDPI, vol. 16(9), pages 1-13, April.
    16. Bikash Koli Dey & Hyesung Seok, 2024. "Intelligent inventory management with autonomation and service strategy," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 307-330, January.
    17. Cheng Hao Jin & Hyun-Jin Kim & Yongjun Piao & Meijing Li & Minghao Piao, 2020. "Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1861-1875, December.
    18. Xinyu Suo & Jian Liu & Licheng Dong & Chen Shengfeng & Lu Enhui & Chen Ning, 2022. "A machine vision-based defect detection system for nuclear-fuel rod groove," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1649-1663, August.
    19. Meng Xiao & Bo Yang & Shilong Wang & Yongsheng Chang & Song Li & Gang Yi, 2023. "Research on recognition methods of spot-welding surface appearances based on transfer learning and a lightweight high-precision convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2153-2170, June.
    20. Chengjun Xu & Guobin Zhu, 2021. "Intelligent manufacturing Lie Group Machine Learning: real-time and efficient inspection system based on fog computing," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 237-249, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5455-:d:1102179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.