Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-022-01918-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Domen Tabernik & Samo Šela & Jure Skvarč & Danijel Skočaj, 2020. "Segmentation-based deep-learning approach for surface-defect detection," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 759-776, March.
- Ruiyang Hao & Bingyu Lu & Ying Cheng & Xiu Li & Biqing Huang, 2021. "A steel surface defect inspection approach towards smart industrial monitoring," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1833-1843, October.
- Syed Hammad Mian & Abdulrahman Al-Ahmari, 2019. "Comparative analysis of different digitization systems and selection of best alternative," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2039-2067, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li Wei & Mahmud Iwan Solihin & Sarah ‘Atifah Saruchi & Winda Astuti & Lim Wei Hong & Ang Chun Kit, 2024. "Surface Defects Detection of Cylindrical High-Precision Industrial Parts Based on Deep Learning Algorithms: A Review," SN Operations Research Forum, Springer, vol. 5(3), pages 1-71, September.
- Aleksandr Dekhovich & Miguel A. Bessa, 2025. "Continual learning for surface defect segmentation by subnetwork creation and selection," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3051-3065, June.
- Jiaqi Zhao & Xiaolong Qian & Yunzhou Zhang & Dexing Shan & Xiaozheng Liu & Sonya Coleman & Dermot Kerr, 2024. "A knowledge distillation-based multi-scale relation-prototypical network for cross-domain few-shot defect classification," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 841-857, February.
- Shuo Meng & Ruru Pan & Weidong Gao & Jian Zhou & Jingan Wang & Wentao He, 2021. "A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1147-1161, April.
- Kun Liu & Ying Yang & Xiaosong Yang & Jingkai Wang & Weipeng Liu & Haiyong Chen, 2025. "Multi-level joint distributed alignment-based domain adaptation for cross-scenario strip defect recognition," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2373-2386, April.
- Dexing Shan & Yunzhou Zhang & Shitong Liu, 2025. "Multi-modal background-aware for defect semantic segmentation with limited data," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3313-3325, June.
- Callum O’Donovan & Cinzia Giannetti & Cameron Pleydell-Pearce, 2025. "Real-time monitoring of molten zinc splatter using machine learning-based computer vision," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3399-3425, June.
- Nhat-To Huynh, 2024. "A multi-subpopulation genetic algorithm-based CNN approach for ceramic tile defects classification," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1781-1792, April.
- Abtin Djavadifar & John Brandon Graham-Knight & Marian Kӧrber & Patricia Lasserre & Homayoun Najjaran, 2022. "Automated visual detection of geometrical defects in composite manufacturing processes using deep convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2257-2275, December.
- Syed Hammad Mian & Khaja Moiduddin & Hisham Alkhalefah & Mustufa Haider Abidi & Faraz Ahmed & Faraz Hussain Hashmi, 2023. "Mechanisms for Choosing PV Locations That Allow for the Most Sustainable Usage of Solar Energy," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
- Shuai Ma & Kechen Song & Menghui Niu & Hongkun Tian & Yunhui Yan, 2024. "Cross-scale fusion and domain adversarial network for generalizable rail surface defect segmentation on unseen datasets," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 367-386, January.
- Zichen Bai & Junfeng Jing, 2024. "Mobile-Deeplab: a lightweight pixel segmentation-based method for fabric defect detection," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3315-3330, October.
- Shuanlong Niu & Yaru Peng & Bin Li & Yuanhong Qiu & Tongzhi Niu & Weifeng Li, 2024. "A novel deep learning motivated data augmentation system based on defect segmentation requirements," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 687-701, February.
- Jae-Eun Park & Young-Keun Kim, 2025. "Semi-supervised learning for steel surface inspection using magnetic flux leakage signal," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1021-1031, February.
- Jiaji Pan & Ruilin Fan & Hanlu Zhang & Yi Gao & Zhiquan Shu & Zhongxiang Chen, 2022. "Investigating the Effectiveness of Government Public Health Systems against COVID-19 by Hybrid MCDM Approaches," Mathematics, MDPI, vol. 10(15), pages 1-20, July.
- Zeqing Yang & Mingxuan Zhang & Yingshu Chen & Ning Hu & Lingxiao Gao & Libing Liu & Enxu Ping & Jung Il Song, 2024. "Surface defect detection method for air rudder based on positive samples," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 95-113, January.
- Yuanyuan Wang & Ling Ma & Lihua Jian & Huiqin Jiang, 2023. "Conductive particle detection via efficient encoder–decoder network," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3563-3577, December.
- Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
- Zhuxi Ma & Yibo Li & Minghui Huang & Qianbin Huang & Jie Cheng & Si Tang, 2023. "Automated real-time detection of surface defects in manufacturing processes of aluminum alloy strip using a lightweight network architecture," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2431-2447, June.
- Yu Gong & Xiaoqiao Wang & Chichun Zhou & Maogen Ge & Conghu Liu & Xi Zhang, 2025. "Human–machine knowledge hybrid augmentation method for surface defect detection based few-data learning," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1723-1742, March.
More about this item
Keywords
Statistical shape analysis; Shape reconstruction; Surface digitization; Sparse sampling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:5:d:10.1007_s10845-022-01918-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.