IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i2d10.1007_s10845-023-02080-w.html
   My bibliography  Save this article

A knowledge distillation-based multi-scale relation-prototypical network for cross-domain few-shot defect classification

Author

Listed:
  • Jiaqi Zhao

    (Northeastern University)

  • Xiaolong Qian

    (Northeastern University)

  • Yunzhou Zhang

    (Northeastern University)

  • Dexing Shan

    (Northeastern University)

  • Xiaozheng Liu

    (Northeastern University)

  • Sonya Coleman

    (University of Ulster)

  • Dermot Kerr

    (University of Ulster)

Abstract

Surface defect classification plays a very important role in industrial production and mechanical manufacturing. However, there are currently some challenges hindering its use. The first is the similarity of different defect samples makes classification a difficult task. Second, the lack of defect samples leads to poor accuracies when using deep learning methods. In this paper, we first design a novel backbone network, ResMSNet, which draws on the idea of multi-scale feature extraction for small discriminative regions in defect samples. Then, we introduce few-shot learning for defect classification and propose a Relation-Prototypical network (RPNet), which combines the characteristics of ProtoNet and RelationNet and provides classification by linking the prototypes distances and the nonlinear relation scores. Next, we consider a more realistic scenario where the base dataset for training the model and target defect dataset for applying the model are usually obtained from domains with large differences, called cross-domain few-shot learning. Hence, we further improve RPNet to KD-RPNet inspired by knowledge distillation methods. Through extensive comparative experiments and ablation experiments, we demonstrate that either our ResMSNet or RPNet proves its effectiveness and KD-RPNet outperforms other state-of-the-art approaches for few-shot defect classification.

Suggested Citation

  • Jiaqi Zhao & Xiaolong Qian & Yunzhou Zhang & Dexing Shan & Xiaozheng Liu & Sonya Coleman & Dermot Kerr, 2024. "A knowledge distillation-based multi-scale relation-prototypical network for cross-domain few-shot defect classification," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 841-857, February.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-023-02080-w
    DOI: 10.1007/s10845-023-02080-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02080-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02080-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Domen Tabernik & Samo Šela & Jure Skvarč & Danijel Skočaj, 2020. "Segmentation-based deep-learning approach for surface-defect detection," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 759-776, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José M. Navarro-Jiménez & José V. Aguado & Grégoire Bazin & Vicente Albero & Domenico Borzacchiello, 2023. "Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2345-2358, June.
    2. Shuo Meng & Ruru Pan & Weidong Gao & Jian Zhou & Jingan Wang & Wentao He, 2021. "A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1147-1161, April.
    3. Nhat-To Huynh, 2024. "A multi-subpopulation genetic algorithm-based CNN approach for ceramic tile defects classification," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1781-1792, April.
    4. Abtin Djavadifar & John Brandon Graham-Knight & Marian Kӧrber & Patricia Lasserre & Homayoun Najjaran, 2022. "Automated visual detection of geometrical defects in composite manufacturing processes using deep convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2257-2275, December.
    5. Li Wei & Mahmud Iwan Solihin & Sarah ‘Atifah Saruchi & Winda Astuti & Lim Wei Hong & Ang Chun Kit, 2024. "Surface Defects Detection of Cylindrical High-Precision Industrial Parts Based on Deep Learning Algorithms: A Review," SN Operations Research Forum, Springer, vol. 5(3), pages 1-71, September.
    6. Zichen Bai & Junfeng Jing, 2024. "Mobile-Deeplab: a lightweight pixel segmentation-based method for fabric defect detection," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3315-3330, October.
    7. Shuanlong Niu & Yaru Peng & Bin Li & Yuanhong Qiu & Tongzhi Niu & Weifeng Li, 2024. "A novel deep learning motivated data augmentation system based on defect segmentation requirements," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 687-701, February.
    8. Jae-Eun Park & Young-Keun Kim, 2025. "Semi-supervised learning for steel surface inspection using magnetic flux leakage signal," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1021-1031, February.
    9. Zeqing Yang & Mingxuan Zhang & Yingshu Chen & Ning Hu & Lingxiao Gao & Libing Liu & Enxu Ping & Jung Il Song, 2024. "Surface defect detection method for air rudder based on positive samples," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 95-113, January.
    10. Yuanyuan Wang & Ling Ma & Lihua Jian & Huiqin Jiang, 2023. "Conductive particle detection via efficient encoder–decoder network," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3563-3577, December.
    11. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    12. Ruiyang Hao & Bingyu Lu & Ying Cheng & Xiu Li & Biqing Huang, 2021. "A steel surface defect inspection approach towards smart industrial monitoring," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1833-1843, October.
    13. Feiyang Li & Nian Cai & Xueliang Deng & Jiahao Li & Jianfa Lin & Han Wang, 2022. "Serial number inspection for ceramic membranes via an end-to-end photometric-induced convolutional neural network framework," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1373-1392, June.
    14. Danqing Kang & Jianhuang Lai & Junyong Zhu & Yu Han, 2023. "An adaptive feature reconstruction network for the precise segmentation of surface defects on printed circuit boards," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3197-3214, October.
    15. Zhenxing Cheng & Hu Wang & Gui-Rong Liu, 2021. "Deep convolutional neural network aided optimization for cold spray 3D simulation based on molecular dynamics," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1009-1023, April.
    16. Saksham Jain & Gautam Seth & Arpit Paruthi & Umang Soni & Girish Kumar, 2022. "Synthetic data augmentation for surface defect detection and classification using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1007-1020, April.
    17. Nhat-To Huynh & Duong-Dong Ho & Hong-Nguyen Nguyen, 2023. "An Approach for Designing an Optimal CNN Model Based on Auto-Tuning GA with 2D Chromosome for Defect Detection and Classification," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    18. Changqing Wang & Maoxuan Sun & Yuan Cao & Kunyu He & Bei Zhang & Zhonghao Cao & Meng Wang, 2023. "Lightweight Network-Based Surface Defect Detection Method for Steel Plates," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    19. Chun Fai Lui & Ahmed Maged & Min Xie, 2024. "A novel image feature based self-supervised learning model for effective quality inspection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3543-3558, October.
    20. Rong Luo & Ruihu Chen & Fengting Jia & Biru Lin & Jie Liu & Yafei Sun & Xinbo Yang & Weikuan Jia, 2023. "RBD-Net: robust breakage detection algorithm for industrial leather," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2783-2796, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-023-02080-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.