IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i2d10.1007_s10845-023-02286-y.html
   My bibliography  Save this article

Semi-supervised learning for steel surface inspection using magnetic flux leakage signal

Author

Listed:
  • Jae-Eun Park

    (Handong Global University)

  • Young-Keun Kim

    (Handong Global University)

Abstract

This paper proposes a semi-supervised learning model for detecting multi-defect classification and localization on the steel surface for industries with limited labeled datasets. This study uses 1-D data from magnetic flux leakage (MFL) testing, a powerful and cost-effective nondestructive inspection method for steel bars. Most steel surface defect systems are based on supervised learning classification with 2-D image datasets. However, acquiring labeled datasets for developing supervised learning models is practically limited in the actual steel manufacturing process. Furthermore, due to the frequent occurrence of multiple defect classes on the same steel bar, the problem of multi-defect classification and localization needs to be addressed. Therefore, this paper proposes a steel bar surface inspection system for multi-defect classification and localization based on a semi-supervised learning model and MFL signals. The proposed system solves the multi-defect classification and localization problem by reducing the feature dimension with an autoencoder. Then, it classifies the defects based on the semi-supervised support vector machines that require only a small portion of the labeled dataset. Also, the classification process is repeated on the overlapped small steel section to address the multi-defect classification and localization issue. When it was evaluated on an industry MFL inspection dataset, the accuracy ranged from 81% to 90% when the labeled data ratio varied from 2% to 90%.

Suggested Citation

  • Jae-Eun Park & Young-Keun Kim, 2025. "Semi-supervised learning for steel surface inspection using magnetic flux leakage signal," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1021-1031, February.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02286-y
    DOI: 10.1007/s10845-023-02286-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02286-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02286-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Changqing Liu & Yingguang Li & Guanyan Zhou & Weiming Shen, 2018. "A sensor fusion and support vector machine based approach for recognition of complex machining conditions," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1739-1752, December.
    2. Huitaek Yun & Hanjun Kim & Young Hun Jeong & Martin B. G. Jun, 2023. "Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1427-1444, March.
    3. Deepam Goyal & Anurag Choudhary & B. S. Pabla & S. S. Dhami, 2020. "Support vector machines based non-contact fault diagnosis system for bearings," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1275-1289, June.
    4. Domen Tabernik & Samo Šela & Jure Skvarč & Danijel Skočaj, 2020. "Segmentation-based deep-learning approach for surface-defect detection," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 759-776, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
    2. Xiang Zhu & Yunqiu Zhang, 2020. "Co-word analysis method based on meta-path of subject knowledge network," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 753-766, May.
    3. Abtin Djavadifar & John Brandon Graham-Knight & Marian Kӧrber & Patricia Lasserre & Homayoun Najjaran, 2022. "Automated visual detection of geometrical defects in composite manufacturing processes using deep convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2257-2275, December.
    4. Dechen Yao & Hengchang Liu & Jianwei Yang & Jiao Zhang, 2021. "Implementation of a novel algorithm of wheelset and axle box concurrent fault identification based on an efficient neural network with the attention mechanism," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 729-743, March.
    5. Li Wei & Mahmud Iwan Solihin & Sarah ‘Atifah Saruchi & Winda Astuti & Lim Wei Hong & Ang Chun Kit, 2024. "Surface Defects Detection of Cylindrical High-Precision Industrial Parts Based on Deep Learning Algorithms: A Review," SN Operations Research Forum, Springer, vol. 5(3), pages 1-71, September.
    6. Zichen Bai & Junfeng Jing, 2024. "Mobile-Deeplab: a lightweight pixel segmentation-based method for fabric defect detection," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3315-3330, October.
    7. Shuanlong Niu & Yaru Peng & Bin Li & Yuanhong Qiu & Tongzhi Niu & Weifeng Li, 2024. "A novel deep learning motivated data augmentation system based on defect segmentation requirements," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 687-701, February.
    8. Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    9. Yuanyuan Wang & Ling Ma & Lihua Jian & Huiqin Jiang, 2023. "Conductive particle detection via efficient encoder–decoder network," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3563-3577, December.
    10. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    11. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    12. Ruiyang Hao & Bingyu Lu & Ying Cheng & Xiu Li & Biqing Huang, 2021. "A steel surface defect inspection approach towards smart industrial monitoring," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1833-1843, October.
    13. Yanxi Zhang & Deyong You & Xiangdong Gao & Congyi Wang & Yangjin Li & Perry P. Gao, 2020. "Real-time monitoring of high-power disk laser welding statuses based on deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 799-814, April.
    14. Aleksandr Dekhovich & Miguel A. Bessa, 2025. "Continual learning for surface defect segmentation by subnetwork creation and selection," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3051-3065, June.
    15. Danqing Kang & Jianhuang Lai & Junyong Zhu & Yu Han, 2023. "An adaptive feature reconstruction network for the precise segmentation of surface defects on printed circuit boards," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3197-3214, October.
    16. Saksham Jain & Gautam Seth & Arpit Paruthi & Umang Soni & Girish Kumar, 2022. "Synthetic data augmentation for surface defect detection and classification using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1007-1020, April.
    17. Jiangming Jia & Chenan Zhang & Jianneng Chen & Zheng Zhu & Ming Mao, 2022. "Fault Diagnosis Analysis of Angle Grinder Based on ACD-DE and SVM Hybrid Algorithm," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
    18. Changqing Wang & Maoxuan Sun & Yuan Cao & Kunyu He & Bei Zhang & Zhonghao Cao & Meng Wang, 2023. "Lightweight Network-Based Surface Defect Detection Method for Steel Plates," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    19. Chun Fai Lui & Ahmed Maged & Min Xie, 2024. "A novel image feature based self-supervised learning model for effective quality inspection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3543-3558, October.
    20. Rong Luo & Ruihu Chen & Fengting Jia & Biru Lin & Jie Liu & Yafei Sun & Xinbo Yang & Weikuan Jia, 2023. "RBD-Net: robust breakage detection algorithm for industrial leather," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2783-2796, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02286-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.