IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v233y2025icp433-447.html
   My bibliography  Save this article

A digital twin approach based method in civil engineering for classification of salt damage in building evaluation

Author

Listed:
  • Guzmán-Torres, J.A.
  • Domínguez-Mota, F.J.
  • Alonso Guzmán, E.M.
  • Tinoco-Guerrero, G.
  • Tinoco-Ruíz, J.G.

Abstract

The integration of digital twins and machine learning models in civil engineering has revolutionized the inspection and maintenance of buildings and structures. Digital twins, as precise virtual replicas of physical assets, enable continuous monitoring and predictive maintenance, enhancing the reliability and efficiency of structural assessments.

Suggested Citation

  • Guzmán-Torres, J.A. & Domínguez-Mota, F.J. & Alonso Guzmán, E.M. & Tinoco-Guerrero, G. & Tinoco-Ruíz, J.G., 2025. "A digital twin approach based method in civil engineering for classification of salt damage in building evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 233(C), pages 433-447.
  • Handle: RePEc:eee:matcom:v:233:y:2025:i:c:p:433-447
    DOI: 10.1016/j.matcom.2025.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475425000382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hossein Omrany & Karam M. Al-Obaidi & Amreen Husain & Amirhosein Ghaffarianhoseini, 2023. "Digital Twins in the Construction Industry: A Comprehensive Review of Current Implementations, Enabling Technologies, and Future Directions," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    2. Domen Tabernik & Samo Šela & Jure Skvarč & Danijel Skočaj, 2020. "Segmentation-based deep-learning approach for surface-defect detection," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 759-776, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Houljakbe Houlteurbe Dagou & Asli Pelin Gurgun & Kerim Koc & Cenk Budayan, 2025. "The Future of Construction: Integrating Innovative Technologies for Smarter Project Management," Sustainability, MDPI, vol. 17(10), pages 1-29, May.
    2. Abtin Djavadifar & John Brandon Graham-Knight & Marian Kӧrber & Patricia Lasserre & Homayoun Najjaran, 2022. "Automated visual detection of geometrical defects in composite manufacturing processes using deep convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2257-2275, December.
    3. Li Wei & Mahmud Iwan Solihin & Sarah ‘Atifah Saruchi & Winda Astuti & Lim Wei Hong & Ang Chun Kit, 2024. "Surface Defects Detection of Cylindrical High-Precision Industrial Parts Based on Deep Learning Algorithms: A Review," SN Operations Research Forum, Springer, vol. 5(3), pages 1-71, September.
    4. Zichen Bai & Junfeng Jing, 2024. "Mobile-Deeplab: a lightweight pixel segmentation-based method for fabric defect detection," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3315-3330, October.
    5. Shuanlong Niu & Yaru Peng & Bin Li & Yuanhong Qiu & Tongzhi Niu & Weifeng Li, 2024. "A novel deep learning motivated data augmentation system based on defect segmentation requirements," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 687-701, February.
    6. Jae-Eun Park & Young-Keun Kim, 2025. "Semi-supervised learning for steel surface inspection using magnetic flux leakage signal," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1021-1031, February.
    7. Yuanyuan Wang & Ling Ma & Lihua Jian & Huiqin Jiang, 2023. "Conductive particle detection via efficient encoder–decoder network," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3563-3577, December.
    8. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    9. Razeen Hashmi & Huai Liu & Ali Yavari, 2024. "Digital Twins for Enhancing Efficiency and Assuring Safety in Renewable Energy Systems: A Systematic Literature Review," Energies, MDPI, vol. 17(11), pages 1-34, May.
    10. Ruiyang Hao & Bingyu Lu & Ying Cheng & Xiu Li & Biqing Huang, 2021. "A steel surface defect inspection approach towards smart industrial monitoring," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1833-1843, October.
    11. Massimo Lauria & Maria Azzalin, 2024. "Digital Transformation in the Construction Sector: A Digital Twin for Seismic Safety in the Lifecycle of Buildings," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
    12. Aleksandr Dekhovich & Miguel A. Bessa, 2025. "Continual learning for surface defect segmentation by subnetwork creation and selection," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3051-3065, June.
    13. Danqing Kang & Jianhuang Lai & Junyong Zhu & Yu Han, 2023. "An adaptive feature reconstruction network for the precise segmentation of surface defects on printed circuit boards," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3197-3214, October.
    14. Saksham Jain & Gautam Seth & Arpit Paruthi & Umang Soni & Girish Kumar, 2022. "Synthetic data augmentation for surface defect detection and classification using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1007-1020, April.
    15. Changqing Wang & Maoxuan Sun & Yuan Cao & Kunyu He & Bei Zhang & Zhonghao Cao & Meng Wang, 2023. "Lightweight Network-Based Surface Defect Detection Method for Steel Plates," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    16. Chun Fai Lui & Ahmed Maged & Min Xie, 2024. "A novel image feature based self-supervised learning model for effective quality inspection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3543-3558, October.
    17. Rong Luo & Ruihu Chen & Fengting Jia & Biru Lin & Jie Liu & Yafei Sun & Xinbo Yang & Weikuan Jia, 2023. "RBD-Net: robust breakage detection algorithm for industrial leather," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2783-2796, August.
    18. José M. Navarro-Jiménez & José V. Aguado & Grégoire Bazin & Vicente Albero & Domenico Borzacchiello, 2023. "Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2345-2358, June.
    19. Jiaqi Zhao & Xiaolong Qian & Yunzhou Zhang & Dexing Shan & Xiaozheng Liu & Sonya Coleman & Dermot Kerr, 2024. "A knowledge distillation-based multi-scale relation-prototypical network for cross-domain few-shot defect classification," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 841-857, February.
    20. Shuo Meng & Ruru Pan & Weidong Gao & Jian Zhou & Jingan Wang & Wentao He, 2021. "A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1147-1161, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:233:y:2025:i:c:p:433-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.