IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i2d10.1007_s10845-016-1275-1.html
   My bibliography  Save this article

Applying the support vector machine with optimal parameter design into an automatic inspection system for classifying micro-defects on surfaces of light-emitting diode chips

Author

Listed:
  • Chung-Feng Jeffrey Kuo

    (National Taiwan University of Science and Technology)

  • Chun-Ping Tung

    (National Taiwan University of Science and Technology)

  • Wei-Han Weng

    (National Taiwan University of Science and Technology)

Abstract

This study discusses the optimal design of an automatic inspection system for processing light-emitting diode (LED) chips. Based on support vector machine (SVM) with optimal theory, the classifications of micro-defects in light area and electrode area on the chip surface, and develop a robust classification module will be analyzed. In order to design the SVM-based defect classification system effectively, the multiple quality characteristics parameter design. The Taguchi method is used to improve the classifier design, and meanwhile, PCA is used for analysis of multiple quality characteristics on influence of characteristics on multi-class intelligent classifier, to regularly select effective features, and reduce classification data. Aim to reduce the classification data and dimensions, and with features containing higher score of principal component as decision tree support vector machine classification module training basis, the optimal multi-class support vector machine model was established for subdivision of micro-defects of electrode area and light area. The comparison of traditional binary structure support vector machine and neural network classifier was conducted. The overall recognition rate of the inspection system herein was more than 96%, and the classification speed for 500 micro-defects was only 3 s. It is clear that we have effectively established an inspection process, which is highly effective even under disturbance. The process can realize the subdivision of micro-defects, and with quick classification, high accuracy, and high stability. It is applicable to precise LED detection and can be used for accurate inspection of LED of mass production effectively to replace visual inspection, economizing on labor cost.

Suggested Citation

  • Chung-Feng Jeffrey Kuo & Chun-Ping Tung & Wei-Han Weng, 2019. "Applying the support vector machine with optimal parameter design into an automatic inspection system for classifying micro-defects on surfaces of light-emitting diode chips," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 727-741, February.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1275-1
    DOI: 10.1007/s10845-016-1275-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-016-1275-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-016-1275-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanxi Zhang & Deyong You & Xiangdong Gao & Congyi Wang & Yangjin Li & Perry P. Gao, 2020. "Real-time monitoring of high-power disk laser welding statuses based on deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 799-814, April.
    2. Diyi Zhou & Shihua Gong & Ziyue Wang & Delong Li & Huaiqing Lu, 2021. "Error analysis based on error transfer theory and compensation strategy for LED chip visual localization systems," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1345-1359, June.
    3. Roham Sadeghi Tabar & Kristina Wärmefjord & Rikard Söderberg & Lars Lindkvist, 2021. "Critical joint identification for efficient sequencing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 769-780, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1275-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.