IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i4d10.1007_s10845-023-02119-y.html
   My bibliography  Save this article

Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing

Author

Listed:
  • T. Herzog

    (RMIT University
    CSIRO Manufacturing Business Unit)

  • M. Brandt

    (RMIT University)

  • A. Trinchi

    (CSIRO Manufacturing Business Unit)

  • A. Sola

    (CSIRO Manufacturing Business Unit)

  • A. Molotnikov

    (RMIT University)

Abstract

Over the past several decades, metal Additive Manufacturing (AM) has transitioned from a rapid prototyping method to a viable manufacturing tool. AM technologies can produce parts on-demand, repair damaged components, and provide an increased freedom of design not previously attainable by traditional manufacturing techniques. The increasing maturation of metal AM is attracting high-value industries to directly produce components for use in aerospace, automotive, biomedical, and energy fields. Two leading processes for metal part production are Powder Bed Fusion with laser beam (PBF-LB/M) and Directed Energy Deposition with laser beam (DED-LB/M). Despite the many advances made with these technologies, the highly dynamic nature of the process frequently results in the formation of defects. These technologies are also notoriously difficult to control, and the existing machines do not offer closed loop control. In the present work, the application of various Machine Learning (ML) approaches and in-situ monitoring technologies for the purpose of defect detection are reviewed. The potential of these methods for enabling process control implementation is discussed. We provide a critical review of trends in the usage of data structures and ML algorithms and compare the capabilities of different sensing technologies and their application to monitoring tasks in laser metal AM. The future direction of this field is then discussed, and recommendations for further research are provided. Graphical abstract

Suggested Citation

  • T. Herzog & M. Brandt & A. Trinchi & A. Sola & A. Molotnikov, 2024. "Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1407-1437, April.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:4:d:10.1007_s10845-023-02119-y
    DOI: 10.1007/s10845-023-02119-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02119-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02119-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oktay Günlük & Jayant Kalagnanam & Minhan Li & Matt Menickelly & Katya Scheinberg, 2021. "Optimal decision trees for categorical data via integer programming," Journal of Global Optimization, Springer, vol. 81(1), pages 233-260, September.
    2. Mojtaba Khanzadeh & Sudipta Chowdhury & Mark A. Tschopp & Haley R. Doude & Mohammad Marufuzzaman & Linkan Bian, 2019. "In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes," IISE Transactions, Taylor & Francis Journals, vol. 51(5), pages 437-455, May.
    3. Mohammad Montazeri & Abdalla R. Nassar & Alexander J. Dunbar & Prahalada Rao, 2020. "In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy," IISE Transactions, Taylor & Francis Journals, vol. 52(5), pages 500-515, May.
    4. Masoumeh Aminzadeh & Thomas R. Kurfess, 2019. "Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2505-2523, August.
    5. Aniruddha Gaikwad & Reza Yavari & Mohammad Montazeri & Kevin Cole & Linkan Bian & Prahalada Rao, 2020. "Toward the digital twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to detect process faults," IISE Transactions, Taylor & Francis Journals, vol. 52(11), pages 1204-1217, November.
    6. Chu Lun Alex Leung & Sebastian Marussi & Robert C. Atwood & Michael Towrie & Philip J. Withers & Peter D. Lee, 2018. "In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    7. Xiang Li & Xiaodong Jia & Qibo Yang & Jay Lee, 2020. "Quality analysis in metal additive manufacturing with deep learning," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2003-2017, December.
    8. Carlos Gonzalez-Val & Adrian Pallas & Veronica Panadeiro & Alvaro Rodriguez, 2020. "A convolutional approach to quality monitoring for laser manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 789-795, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.
    2. Yingjie Zhang & Wentao Yan, 2023. "Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2557-2580, August.
    3. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    4. Yong Ren & Qian Wang, 2022. "Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2239-2256, December.
    5. Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
    6. Mohammad Borumand & Saideep Nannapaneni & Gurucharan Madiraddy & Michael P. Sealy & Sima Esfandiarpour Borujeni & Gisuk Hwang, 2025. "Smart process mapping of powder bed fusion additively manufactured metallic wicks using surrogate modeling," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1819-1833, March.
    7. Andrew Chung Chee Law & Rongxuan Wang & Jihoon Chung & Ezgi Kucukdeger & Yang Liu & Ted Barron & Blake N. Johnson & Zhenyu Kong, 2024. "Process parameter optimization for reproducible fabrication of layer porosity quality of 3D-printed tissue scaffold," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1825-1844, April.
    8. Vigneashwara Pandiyan & Di Cui & Roland Axel Richter & Annapaola Parrilli & Marc Leparoux, 2025. "Real-time monitoring and quality assurance for laser-based directed energy deposition: integrating co-axial imaging and self-supervised deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 909-933, February.
    9. Haijie Wang & Bo Li & Saifan Zhang & Fuzhen Xuan, 2025. "Traditional machine learning and deep learning for predicting melt-pool cross-sectional morphology of laser powder bed fusion additive manufacturing with thermographic monitoring," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2079-2104, March.
    10. Michael D. T. McDonnell & Daniel Arnaldo & Etienne Pelletier & James A. Grant-Jacob & Matthew Praeger & Dimitris Karnakis & Robert W. Eason & Ben Mills, 2021. "Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1471-1483, June.
    11. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    12. Nannan Xu & Xinze Cui & Xin Wang & Wei Zhang & Tianyu Zhao, 2022. "An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    13. Nazanin Hosseini Arian & Alireza Pooya & Fariborz Rahimnia & Ali Sibevei, 2021. "Assessment the effect of rapid prototyping implementation on supply chain sustainability: a system dynamics approach," Operations Management Research, Springer, vol. 14(3), pages 467-493, December.
    14. Shimin Liu & Pai Zheng & Jinsong Bao, 2024. "Digital Twin-based manufacturing system: a survey based on a novel reference model," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2517-2546, August.
    15. Ammar H. Elsheikh & Taher A. Shehabeldeen & Jianxin Zhou & Ezzat Showaib & Mohamed Abd Elaziz, 2021. "Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1377-1388, June.
    16. Jože M. Rožanec & Luka Bizjak & Elena Trajkova & Patrik Zajec & Jelle Keizer & Blaž Fortuna & Dunja Mladenić, 2024. "Active learning and novel model calibration measurements for automated visual inspection in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 1963-1984, June.
    17. Thai Le-Hong & Pai Chen Lin & Jian-Zhong Chen & Thinh Duc Quy Pham & Xuan Tran, 2023. "Data-driven models for predictions of geometric characteristics of bead fabricated by selective laser melting," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1241-1257, March.
    18. Chen-Fu Chien & Jia-Yu Peng, 2025. "Bayesian inference for multi-label classification for root cause analysis and probe card maintenance decision support and an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1943-1958, March.
    19. David Guirguis & Conrad Tucker & Jack Beuth, 2024. "Accelerating process development for 3D printing of new metal alloys," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Javid Akhavan & Jiaqi Lyu & Souran Manoochehri, 2024. "A deep learning solution for real-time quality assessment and control in additive manufacturing using point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1389-1406, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:4:d:10.1007_s10845-023-02119-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.