IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v52y2020i5p500-515.html
   My bibliography  Save this article

In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy

Author

Listed:
  • Mohammad Montazeri
  • Abdalla R. Nassar
  • Alexander J. Dunbar
  • Prahalada Rao

Abstract

A key challenge in metal additive manufacturing is the prevalence of defects, such as discontinuities within the part (e.g., porosity). The objective of this work is to monitor porosity in Laser Powder Bed Fusion (L-PBF) additive manufacturing of nickel alloy 718 (popularly called Inconel 718) test parts using in-process optical emission spectroscopy. To realize this objective, cylinder-shaped test parts are built under different processing conditions on a commercial L-PBF machine instrumented with an in-situ multispectral photodetector sensor. Optical emission signatures are captured continuously during the build by the multispectral sensor. Following processing, the porosity-level within each layer of a test part is quantified using X-ray Computed Tomography (CT). The graph Fourier transform coefficients are derived layer-by-layer from signatures acquired from the multispectral photodetector sensor. These graph Fourier transform coefficients are subsequently invoked as input features within various machine learning models to predict the percentage porosity-level in each layer with CT data taken as ground truth. This approach is found to predict the porosity on a layer-by-layer basis with an accuracy of ∼90% (F-score) in a computation time less than 0.5 seconds. In comparison, statistical moments, such as mean, variation, etc., are less accurate (F-score ≈ 80%) and require a computation time exceeding 5 seconds.

Suggested Citation

  • Mohammad Montazeri & Abdalla R. Nassar & Alexander J. Dunbar & Prahalada Rao, 2020. "In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy," IISE Transactions, Taylor & Francis Journals, vol. 52(5), pages 500-515, May.
  • Handle: RePEc:taf:uiiexx:v:52:y:2020:i:5:p:500-515
    DOI: 10.1080/24725854.2019.1659525
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2019.1659525
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2019.1659525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    2. Yingjie Zhang & Wentao Yan, 2023. "Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2557-2580, August.
    3. Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:52:y:2020:i:5:p:500-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.