Detecting and classifying hidden defects in additively manufactured parts using deep learning and X-ray computed tomography
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-024-02416-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Saksham Jain & Gautam Seth & Arpit Paruthi & Umang Soni & Girish Kumar, 2022. "Synthetic data augmentation for surface defect detection and classification using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1007-1020, April.
- Chu Lun Alex Leung & Sebastian Marussi & Robert C. Atwood & Michael Towrie & Philip J. Withers & Peter D. Lee, 2018. "In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
- Sebastian Meister & Nantwin Möller & Jan Stüve & Roger M. Groves, 2021. "Synthetic image data augmentation for fibre layup inspection processes: Techniques to enhance the data set," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1767-1789, August.
- Saumuy Suriano & Hui Wang & Chenhui Shao & S. Jack Hu & Praveen Sekhar, 2015. "Progressive measurement and monitoring for multi-resolution data in surface manufacturing considering spatial and cross correlations," IISE Transactions, Taylor & Francis Journals, vol. 47(10), pages 1033-1052, October.
- Amanjeet Singh Bhatia & Rado Kotorov & Lianhua Chi, 2023. "Casting plate defect detection using motif discovery with minimal model training and small data sets," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1731-1742, April.
- Jia (Peter) Liu & Chenang Liu & Yun Bai & Prahalada Rao & Christopher B. Williams & Zhenyu (James) Kong, 2019. "Layer-wise spatial modeling of porosity in additive manufacturing," IISE Transactions, Taylor & Francis Journals, vol. 51(2), pages 109-123, February.
- Martin Szarski & Sunita Chauhan, 2022. "An unsupervised defect detection model for a dry carbon fiber textile," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2075-2092, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
- Erica Espinosa & Alvaro Figueira, 2023. "On the Quality of Synthetic Generated Tabular Data," Mathematics, MDPI, vol. 11(15), pages 1-18, July.
- Kun Liu & Ying Yang & Xiaosong Yang & Jingkai Wang & Weipeng Liu & Haiyong Chen, 2025. "Multi-level joint distributed alignment-based domain adaptation for cross-scenario strip defect recognition," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2373-2386, April.
- T. Herzog & M. Brandt & A. Trinchi & A. Sola & A. Molotnikov, 2024. "Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1407-1437, April.
- Isack Farady & Chih-Yang Lin & Ming-Ching Chang, 2024. "PreAugNet: improve data augmentation for industrial defect classification with small-scale training data," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1233-1246, March.
- Jia Liu & Jiafeng Ye & Daniel Silva Izquierdo & Aleksandr Vinel & Nima Shamsaei & Shuai Shao, 2023. "A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3249-3275, December.
- Shouhong Chen & Zhentao Huang & Tao Wang & Xingna Hou & Jun Ma, 2025. "Wafer map defect recognition based on multi-scale feature fusion and attention spatial pyramid pooling," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 271-284, January.
- Romina Dastoorian & Lee J. Wells, 2023. "A hybrid off-line/on-line quality control approach for real-time monitoring of high-density datasets," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 669-682, February.
- Li Wei & Mahmud Iwan Solihin & Sarah ‘Atifah Saruchi & Winda Astuti & Lim Wei Hong & Ang Chun Kit, 2024. "Surface Defects Detection of Cylindrical High-Precision Industrial Parts Based on Deep Learning Algorithms: A Review," SN Operations Research Forum, Springer, vol. 5(3), pages 1-71, September.
- Zichen Bai & Junfeng Jing, 2024. "Mobile-Deeplab: a lightweight pixel segmentation-based method for fabric defect detection," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3315-3330, October.
- Zeqing Yang & Mingxuan Zhang & Yingshu Chen & Ning Hu & Lingxiao Gao & Libing Liu & Enxu Ping & Jung Il Song, 2024. "Surface defect detection method for air rudder based on positive samples," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 95-113, January.
- Sebastian Meister & Mahdieu A. M. Wermes & Jan Stüve & Roger M. Groves, 2021. "Review of image segmentation techniques for layup defect detection in the Automated Fiber Placement process," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2099-2119, December.
- Yu Gong & Xiaoqiao Wang & Chichun Zhou & Maogen Ge & Conghu Liu & Xi Zhang, 2025. "Human–machine knowledge hybrid augmentation method for surface defect detection based few-data learning," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1723-1742, March.
- Yuquan Meng & Yuhang Yang & Haseung Chung & Pil-Ho Lee & Chenhui Shao, 2018. "Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
- Songling Huang & Lisha Peng & Hongyu Sun & Shisong Li, 2023. "Deep Learning for Magnetic Flux Leakage Detection and Evaluation of Oil & Gas Pipelines: A Review," Energies, MDPI, vol. 16(3), pages 1-27, January.
- Zhangyue Shi & Yuxuan Li & Chenang Liu, 2025. "Knowledge distillation-based information sharing for online process monitoring in decentralized manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2177-2192, March.
- Ziyuan Xie & Fan Chen & Lu Wang & Wenjun Ge & Wentao Yan, 2024. "Data-driven prediction of keyhole features in metal additive manufacturing based on physics-based simulation," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2313-2326, June.
- Wang, Haijie & Li, Bo & Lei, Liming & Xuan, Fuzhen, 2024. "Uncertainty-aware fatigue-life prediction of additively manufactured Hastelloy X superalloy using a physics-informed probabilistic neural network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Ruining Tang & Zhenyu Liu & Yiguo Song & Guifang Duan & Jianrong Tan, 2024. "Hierarchical multi-scale network for cross-scale visual defect detection," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1141-1157, March.
- Alberto Garcia-Perez & Maria Jose Gomez-Silva & Arturo de la Escalera-Hueso, 2025. "A Generative AI approach to improve in-situ vision tool wear monitoring with scarce data," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3165-3183, June.
More about this item
Keywords
Additive manufacturing; Machine learning; Synthetic data; Nondestructive inspection; Defect detection; Quality systems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02416-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.