IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007664.html
   My bibliography  Save this article

Uncertainty-aware fatigue-life prediction of additively manufactured Hastelloy X superalloy using a physics-informed probabilistic neural network

Author

Listed:
  • Wang, Haijie
  • Li, Bo
  • Lei, Liming
  • Xuan, Fuzhen

Abstract

Microstructural inhomogeneity in additively manufactured (AM) components leads to uncertainty in their fatigue performance. While purely data-driven methods can only provide deterministic outcomes and lack physical interpretability. Furthermore, considering the dispersion of fatigue life, a probabilistic neural network framework integrating physical information, namely a physics-informed probabilistic neural network (PIPNN), is proposed for predicting the fatigue life of AM parts. The framework describes the dispersion of fatigue life in the parametric form of probability statistics. It incorporates physical laws and models to constrain neurons and loss function, enabling the network to learn deeper physical laws that align with the fatigue process, thus enhancing the interpretability and prediction reliability of the model. Fatigue experiments were performed on Hastelloy X superalloy specimens fabricated using laser powder bed fusion, serving as the basis for validating and comparing the PIPNN model with a probabilistic neural network. The results indicate that PIPNN adeptly captures the heteroskedasticity of fatigue life and exhibits superior prediction accuracy and more reliable prediction performance in fatigue-life prediction. PIPNN offers a physically consistent method for fatigue-life prediction considering probabilistic statistics.

Suggested Citation

  • Wang, Haijie & Li, Bo & Lei, Liming & Xuan, Fuzhen, 2024. "Uncertainty-aware fatigue-life prediction of additively manufactured Hastelloy X superalloy using a physics-informed probabilistic neural network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007664
    DOI: 10.1016/j.ress.2023.109852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arun Poudel & Mohammad Salman Yasin & Jiafeng Ye & Jia Liu & Aleksandr Vinel & Shuai Shao & Nima Shamsaei, 2022. "Feature-based volumetric defect classification in metal additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Minglei Qu & Qilin Guo & Luis I. Escano & Ali Nabaa & S. Mohammad H. Hojjatzadeh & Zachary A. Young & Lianyi Chen, 2022. "Publisher Correction: Controlling process instability for defect lean metal additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    3. Chu Lun Alex Leung & Sebastian Marussi & Robert C. Atwood & Michael Towrie & Philip J. Withers & Peter D. Lee, 2018. "In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Mendoza, Jorge & Bismut, Elizabeth & Straub, Daniel & Köhler, Jochen, 2022. "Optimal life-cycle mitigation of fatigue failure risk for structural systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Li, Yongjie & Liu, Zheng & He, Zhenfeng & Tu, Liang & Huang, Hong-Zhong, 2023. "Fatigue reliability analysis and assessment of offshore wind turbine blade adhesive bonding under the coupling effects of multiple environmental stresses," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    6. Minglei Qu & Qilin Guo & Luis I. Escano & Ali Nabaa & S. Mohammad H. Hojjatzadeh & Zachary A. Young & Lianyi Chen, 2022. "Controlling process instability for defect lean metal additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Liu, Xintian & Yu, Xueguang & Tong, Jiachi & Wang, Xu & Wang, Xiaolan, 2021. "Mixed uncertainty analysis for dynamic reliability of mechanical structures considering residual strength," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    8. Wang, Run-Zi & Gu, Hang-Hang & Liu, Yu & Miura, Hideo & Zhang, Xian-Cheng & Tu, Shan-Tung, 2023. "Surrogate-modeling-assisted creep-fatigue reliability assessment in a low-pressure turbine disc considering multi-source uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    9. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Li, Butong & Zhu, Junjie & Zhao, Xufeng, 2025. "A prior knowledge-guided predictive framework for LCF life and its implementation in shaft-like components under multiaxial loading," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    3. Linfeng Xu & Zetan Cao & Zhiwen Liu & Cheng Zheng & Simin Peng & Yong Lu & Haoran Liu & Bin Chen, 2025. "Filming evolution dynamics of Hg nanodroplets mediated at solid-gas and solid-liquid interfaces by in-situ TEM," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Ge Wang & Yin Zhang & Jian Liu & Wen Chen & Kang Wang & Bo Cui & Bingkun Zou & Qiubao Ouyang & Yanming Zhang & Zhaoyang Hu & Lu Wang & Wentao Yan & Shenbao Jin & Jun Ding & Y. Morris Wang & Ting Zhu &, 2025. "Dispersion hardening using amorphous nanoparticles deployed via additive manufacturing," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Li, Butong & Zhu, Junjie & Zhao, Xufeng, 2025. "A hybrid physics informed predictive scheme for predicting low-cycle fatigue life and reliability of aerospace materials under multiaxial loading conditions," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    6. Shuo Qu & Liqiang Wang & Shengbiao Zhang & Chenfeng Yang & Hou Yi Chia & Gengbo Wu & Zongxin Hu & Junhao Ding & Wentao Yan & Yang Zhang & Chi Hou Chan & Wen Chen & Yang Lu & Xu Song, 2025. "Oxide-dispersion-enabled laser additive manufacturing of high-resolution copper," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    7. Kai Zhang & Yunhui Chen & Sebastian Marussi & Xianqiang Fan & Maureen Fitzpatrick & Shishira Bhagavath & Marta Majkut & Bratislav Lukic & Kudakwashe Jakata & Alexander Rack & Martyn A. Jones & Junji S, 2024. "Pore evolution mechanisms during directed energy deposition additive manufacturing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Gu, Hang-Hang & Wang, Run-Zi & Zhang, Kun & Li, Kai-Shang & Sun, Li & Zhang, Xian-Cheng & Tu, Shan-Tung, 2025. "Damage-driven framework for reliability assessment of steam turbine rotors operating under flexible conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    9. Dongsheng Zhang & Wei Liu & Yuxiao Li & Darui Sun & Yu Wu & Shengnian Luo & Sen Chen & Ye Tao & Bingbing Zhang, 2023. "In situ observation of crystal rotation in Ni-based superalloy during additive manufacturing process," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Gao, Hai-Feng & Wang, Yu-Hang & Li, Yang & Zio, Enrico, 2024. "Distributed-collaborative surrogate modeling approach for creep-fatigue reliability assessment of turbine blades considering multi-source uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    11. Cuesta, Jokin & Leturiondo, Urko & Vidal, Yolanda & Pozo, Francesc, 2025. "A review of prognostics and health management techniques in wind energy," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    12. He, Yu & Ma, Yafei & Huang, Ke & Wang, Lei & Zhang, Jianren, 2024. "Digital twin Bayesian entropy framework for corrosion fatigue life prediction and calibration of bridge suspender," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    13. Chen, Edward & Bao, Han & Dinh, Nam, 2024. "Evaluating the reliability of machine-learning-based predictions used in nuclear power plant instrumentation and control systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    14. Li, Jian & Yang, Zhao & He, Hongxia & Guo, Changzhen & Chen, Yubo & Zhang, Yong, 2024. "Risk causation analysis and prevention strategy of working fluid systems based on accident data and complex network theory," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    15. T. Herzog & M. Brandt & A. Trinchi & A. Sola & A. Molotnikov, 2024. "Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1407-1437, April.
    16. Du, Jianwei & Ren, Gang & Cui, Jialei & Cao, Qi & Wang, Jian & Wu, Chenyang & Zhang, Jiefei, 2025. "Monitoring of operational resilience on urban road network: A Shaoxing case study," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    17. Li, Si-Qi & Gardoni, Paolo, 2024. "Optimized seismic hazard and structural vulnerability model considering macroseismic intensity measures," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    18. Yao, Zhenghong & Hao, Jin & Li, Changyou & Jiang, Zhiyuan & Zhao, Jinsong, 2025. "Reliability-based design optimization of fluid-conveying pipeline structure subjected to in-service loadings," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    19. Du, Jianwei & Cui, Jialei & Ren, Gang & Thompson, Russell G. & Zhang, Lele, 2025. "Cascading failures and resilience evolution in urban road traffic networks with bounded rational route choice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).
    20. Zhao, Zilong & Lv, Guoquan & Xu, Yanwen & Lin, Yu-Feng & Wang, Pingfeng & Wang, Xinlei, 2024. "Enhancing ground source heat pump system design optimization: A stochastic model incorporating transient geological factors and decision variables," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.