IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002455.html
   My bibliography  Save this article

A prior knowledge-guided predictive framework for LCF life and its implementation in shaft-like components under multiaxial loading

Author

Listed:
  • Li, Butong
  • Zhu, Junjie
  • Zhao, Xufeng

Abstract

Predicting low-cycle fatigue (LCF) life under complex loading conditions has long been a challenge. Reliable fatigue life prediction is crucial for the fatigue reliability assessment of industrial components. This paper proposes a prior knowledge-guided framework for predicting LCF life under multiaxial loading conditions. The framework integrates physical knowledge and partial known relationships. Inspired by concepts from reliability-based design optimization (RBDO), the framework is capable of predicting deterministic and probabilistic LCF life with greater efficiency and accuracy. Building on this, we discuss the LCF life degradation of components under survival rates by introducing the multiaxial fatigue parameter. The parameter can effectively describe the trends of LCF life under elliptical multiaxial loading paths. Furthermore, the hazard rate and fatigue reliability of structural components is investigated. The research presented in this paper can offer valuable guidance for applications in practical industrial contexts.

Suggested Citation

  • Li, Butong & Zhu, Junjie & Zhao, Xufeng, 2025. "A prior knowledge-guided predictive framework for LCF life and its implementation in shaft-like components under multiaxial loading," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002455
    DOI: 10.1016/j.ress.2025.111044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klemenc, Jernej, 2015. "Influence of fatigue–life data modelling on the estimated reliability of a structure subjected to a constant-amplitude loading," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 238-247.
    2. Ardeshiri, Reza Rouhi & Liu, Ming & Ma, Chengbin, 2022. "Multivariate stacked bidirectional long short term memory for lithium-ion battery health management," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Wang, Run-Zi & Gu, Hang-Hang & Zhu, Shun-Peng & Li, Kai-Shang & Wang, Ji & Wang, Xiao-Wei & Hideo, Miura & Zhang, Xian-Cheng & Tu, Shan-Tung, 2022. "A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Li, Yongjie & Liu, Zheng & He, Zhenfeng & Tu, Liang & Huang, Hong-Zhong, 2023. "Fatigue reliability analysis and assessment of offshore wind turbine blade adhesive bonding under the coupling effects of multiple environmental stresses," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    5. Shittu, Abdulhakim Adeoye & Mehmanparast, Ali & Hart, Phil & Kolios, Athanasios, 2021. "Comparative study between S-N and fracture mechanics approach on reliability assessment of offshore wind turbine jacket foundations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Sebastian Farquhar & Jannik Kossen & Lorenz Kuhn & Yarin Gal, 2024. "Detecting hallucinations in large language models using semantic entropy," Nature, Nature, vol. 630(8017), pages 625-630, June.
    7. Gu, Liudong & Wang, Guanjun & Zhou, Yifan, 2024. "Optimal allocation of multi-state performance sharing systems with multiple common buses," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    8. Wang, Run-Zi & Gu, Hang-Hang & Liu, Yu & Miura, Hideo & Zhang, Xian-Cheng & Tu, Shan-Tung, 2023. "Surrogate-modeling-assisted creep-fatigue reliability assessment in a low-pressure turbine disc considering multi-source uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    9. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Gao, Haifeng & Wang, Anjenq & Zio, Enrico & Bai, Guangchen, 2020. "An integrated reliability approach with improved importance sampling for low-cycle fatigue damage prediction of turbine disks," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Gu, Hang-Hang & Wang, Run-Zi & Zhang, Kun & Li, Kai-Shang & Sun, Li & Zhang, Xian-Cheng & Tu, Shan-Tung, 2025. "Damage-driven framework for reliability assessment of steam turbine rotors operating under flexible conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    3. Gao, Hai-Feng & Wang, Yu-Hang & Li, Yang & Zio, Enrico, 2024. "Distributed-collaborative surrogate modeling approach for creep-fatigue reliability assessment of turbine blades considering multi-source uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    4. Li, Butong & Zhu, Junjie & Zhao, Xufeng, 2025. "A hybrid physics informed predictive scheme for predicting low-cycle fatigue life and reliability of aerospace materials under multiaxial loading conditions," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    5. Gu, Hang-Hang & Wang, Run-Zi & Tang, Min-Jin & Zhang, Xian-Cheng & Tu, Shan-Tung, 2024. "Data-physics-model based fatigue reliability assessment methodology for high-temperature components and its application in steam turbine rotor," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Gassab, Adel & Sghaier, Rabi Ben & Fathallah, Raouf, 2023. "Fatigue reliability prediction of shape memory alloy parts based on multi-scale high cycle fatigue criterion," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Wang, Haijie & Li, Bo & Lei, Liming & Xuan, Fuzhen, 2024. "Uncertainty-aware fatigue-life prediction of additively manufactured Hastelloy X superalloy using a physics-informed probabilistic neural network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Han, Fucheng & Wang, Wenhua & Zheng, Xiao-Wei & Han, Xu & Shi, Wei & Li, Xin, 2025. "Investigation of essential parameters for the design of offshore wind turbine based on structural reliability," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    9. Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Lu, Cheng & Teng, Da & Chen, Jun-Yu & Fei, Cheng-Wei & Keshtegar, Behrooz, 2023. "Adaptive vectorial surrogate modeling framework for multi-objective reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Wang, Run-Zi & Gu, Hang-Hang & Liu, Yu & Miura, Hideo & Zhang, Xian-Cheng & Tu, Shan-Tung, 2023. "Surrogate-modeling-assisted creep-fatigue reliability assessment in a low-pressure turbine disc considering multi-source uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    12. Deyin, Jiang & Zhixuan, Gao & Keke, Wang & Senke, Jiang & Weimin, Cui & Song, Bifeng, 2025. "A reliability analysis method for evaluating performance degradation considering the coupling of multiple progressive damage factors and multiple stochastic factors," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    13. Zhang, Jiusi & Tian, Jilun & Yan, Pengfei & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "Multi-hop graph pooling adversarial network for cross-domain remaining useful life prediction: A distributed federated learning perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Mei, Fabin & Chen, Hao & Yang, Wenying & Zhai, Guofu, 2024. "A hybrid physics-informed machine learning approach for time-dependent reliability assessment of electromagnetic relays," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    15. Cuesta, Jokin & Leturiondo, Urko & Vidal, Yolanda & Pozo, Francesc, 2025. "A review of prognostics and health management techniques in wind energy," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    16. He, Yu & Ma, Yafei & Huang, Ke & Wang, Lei & Zhang, Jianren, 2024. "Digital twin Bayesian entropy framework for corrosion fatigue life prediction and calibration of bridge suspender," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    17. Chen, Edward & Bao, Han & Dinh, Nam, 2024. "Evaluating the reliability of machine-learning-based predictions used in nuclear power plant instrumentation and control systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    18. Li, Jian & Yang, Zhao & He, Hongxia & Guo, Changzhen & Chen, Yubo & Zhang, Yong, 2024. "Risk causation analysis and prevention strategy of working fluid systems based on accident data and complex network theory," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    19. Yusong Ke & Hongru Lin & Yuting Ruan & Junya Tang & Li Li, 2025. "Correctness Coverage Evaluation for Medical Multiple-Choice Question Answering Based on the Enhanced Conformal Prediction Framework," Mathematics, MDPI, vol. 13(9), pages 1-17, May.
    20. Du, Jianwei & Ren, Gang & Cui, Jialei & Cao, Qi & Wang, Jian & Wu, Chenyang & Zhang, Jiefei, 2025. "Monitoring of operational resilience on urban road network: A Shaoxing case study," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.