IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i5d10.1007_s10845-023-02157-6.html
   My bibliography  Save this article

Data-driven prediction of keyhole features in metal additive manufacturing based on physics-based simulation

Author

Listed:
  • Ziyuan Xie

    (National University of Singapore)

  • Fan Chen

    (National University of Singapore)

  • Lu Wang

    (National University of Singapore)

  • Wenjun Ge

    (National University of Singapore)

  • Wentao Yan

    (National University of Singapore)

Abstract

The defect formation is closely related to molten pool and keyhole features in metal additive manufacturing. Experimentation and physics-based simulation methods to capture the molten pool and keyhole features are expensive and time-consuming. A data-driven method is proposed in this work to efficiently predict the molten pool and keyhole features characterized by a series of fitting curves under given manufacturing parameters, instead of simply predicting the molten pool and keyhole sizes. The database consists of simulation cases with the high-fidelity thermal-fluid flow model. Molten pool melting regime, keyhole stability and keyhole type are recognized with the neural net pattern recognition. With the Gaussian process regression model, the keyhole dimensions are predicted and the keyhole contour is reconstructed. The comparison between predicted data and physics-based simulation results demonstrates the feasibility and accuracy of our data-driven model. Meanwhile, the predicted results can guide the selection of manufacturing parameters in actual production, and are also helpful to the further study of pores in additive manufacturing in academic research.

Suggested Citation

  • Ziyuan Xie & Fan Chen & Lu Wang & Wenjun Ge & Wentao Yan, 2024. "Data-driven prediction of keyhole features in metal additive manufacturing based on physics-based simulation," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2313-2326, June.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02157-6
    DOI: 10.1007/s10845-023-02157-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02157-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02157-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chunyang Xia & Zengxi Pan & Joseph Polden & Huijun Li & Yanling Xu & Shanben Chen, 2022. "Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1467-1482, June.
    2. S. Mohammad H. Hojjatzadeh & Niranjan D. Parab & Wentao Yan & Qilin Guo & Lianghua Xiong & Cang Zhao & Minglei Qu & Luis I. Escano & Xianghui Xiao & Kamel Fezzaa & Wes Everhart & Tao Sun & Lianyi Chen, 2019. "Pore elimination mechanisms during 3D printing of metals," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Chu Lun Alex Leung & Sebastian Marussi & Robert C. Atwood & Michael Towrie & Philip J. Withers & Peter D. Lee, 2018. "In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Thinh Quy Duc Pham & Truong Vinh Hoang & Xuan Tran & Quoc Tuan Pham & Seifallah Fetni & Laurent Duchêne & Hoang Son Tran & Anne-Marie Habraken, 2023. "Fast and accurate prediction of temperature evolutions in additive manufacturing process using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1701-1719, April.
    5. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    6. Aiden A. Martin & Nicholas P. Calta & Saad A. Khairallah & Jenny Wang & Phillip J. Depond & Anthony Y. Fong & Vivek Thampy & Gabe M. Guss & Andrew M. Kiss & Kevin H. Stone & Christopher J. Tassone & J, 2019. "Dynamics of pore formation during laser powder bed fusion additive manufacturing," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Yuze Huang & Tristan G. Fleming & Samuel J. Clark & Sebastian Marussi & Kamel Fezzaa & Jeyan Thiyagalingam & Chu Lun Alex Leung & Peter D. Lee, 2022. "Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Chenglin Li & Baohai Wu & Zhao Zhang & Ying Zhang, 2023. "A novel process planning method of 3 + 2-axis additive manufacturing for aero-engine blade based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2027-2042, April.
    9. Jingchao Jiang & Yi Xiong & Zhiyuan Zhang & David W. Rosen, 2022. "Machine learning integrated design for additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1073-1086, April.
    10. Osama Aljarrah & Jun Li & Alfa Heryudono & Wenzhen Huang & Jing Bi, 2023. "Predicting part distortion field in additive manufacturing: a data-driven framework," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1975-1993, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Mujtaba & Faisal Islam & Patrick Kaeding & Thomas Lindemann & B. Gangadhara Prusty, 2025. "Machine-learning based process monitoring for automated composites manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1095-1110, February.
    2. Devin Young & Britannia Vondrasek & Michael W. Czabaj, 2025. "Machine learning guided design of experiments to accelerate exploration of a material extrusion process parameter space," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 491-508, January.
    3. Kai Zhang & Yunhui Chen & Sebastian Marussi & Xianqiang Fan & Maureen Fitzpatrick & Shishira Bhagavath & Marta Majkut & Bratislav Lukic & Kudakwashe Jakata & Alexander Rack & Martyn A. Jones & Junji S, 2024. "Pore evolution mechanisms during directed energy deposition additive manufacturing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Onuchukwu Godwin Chike & Yee Jian Chin & Norhayati Ahmad & Wan Fahmin Faiz Wan Ali, 2025. "Impact of Machine/Deep Learning on Additive Manufacturing: Publication Trends, Bibliometric Analysis, and Literature Review (2013–2022)," SN Operations Research Forum, Springer, vol. 6(2), pages 1-29, June.
    5. Yingjie Zhang & Wentao Yan, 2023. "Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2557-2580, August.
    6. Zen-Hao Lai & Siguang Xu & Samuel J. Clark & Kamel Fezzaa & Jingjing Li, 2024. "Unveiling mechanisms and onset threshold of humping in high-speed laser welding," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Waqar Ahmed Khan & Mahmoud Masoud & Abdelrahman E. E. Eltoukhy & Mehran Ullah, 2025. "Stacked encoded cascade error feedback deep extreme learning machine network for manufacturing order completion time," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1313-1339, February.
    8. T. Herzog & M. Brandt & A. Trinchi & A. Sola & A. Molotnikov, 2024. "Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1407-1437, April.
    9. Iñigo Flores Ituarte & Suraj Panicker & Hari P. N. Nagarajan & Eric Coatanea & David W. Rosen, 2023. "Optimisation-driven design to explore and exploit the process–structure–property–performance linkages in digital manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 219-241, January.
    10. David Guirguis & Conrad Tucker & Jack Beuth, 2024. "Accelerating process development for 3D printing of new metal alloys," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Wu, Jianzhao & Zhang, Chaoyong & Giam, Amanda & Chia, Hou Yi & Cao, Huajun & Ge, Wenjun & Yan, Wentao, 2024. "Physics-assisted transfer learning metamodels to predict bead geometry and carbon emission in laser butt welding," Applied Energy, Elsevier, vol. 359(C).
    12. A. Boschetto & L. Bottini & S. Vatanparast, 2024. "Powder bed monitoring via digital image analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 991-1011, March.
    13. Neng Ren & Jun Li & Ruiyao Zhang & Chinnapat Panwisawas & Mingxu Xia & Hongbiao Dong & Jianguo Li, 2023. "Solute trapping and non-equilibrium microstructure during rapid solidification of additive manufacturing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Jingchang Li & Qi Zhou & Xufeng Huang & Menglei Li & Longchao Cao, 2023. "In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 853-867, February.
    15. Giulio Mattera & Luigi Nele & Davide Paolella, 2024. "Monitoring and control the Wire Arc Additive Manufacturing process using artificial intelligence techniques: a review," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 467-497, February.
    16. Lingxiu Dong & Duo Shi & Fuqiang Zhang, 2022. "3D Printing and Product Assortment Strategy," Management Science, INFORMS, vol. 68(8), pages 5724-5744, August.
    17. Jyothi Padmaja Koduru & T. Vijay Kumar & Kedar Mallik Mantrala, 2024. "A review of wire and arc additive manufacturing using different property characterization, challenges and future trends," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4563-4581, September.
    18. Pengfei Wang & Jinkun Deng & Xu Li & Changchun Hua & Lihong Su & Guanyu Deng, 2024. "A novel strategy based on machine learning of selective cooling control of work roll for improvement of cold rolled strip flatness," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3559-3576, October.
    19. Abderrachid Hamrani & Arvind Agarwal & Amine Allouhi & Dwayne McDaniel, 2024. "Applying machine learning to wire arc additive manufacturing: a systematic data-driven literature review," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2407-2439, August.
    20. Zhuangzhuang Mao & Wei Feng & Xiao Han & Heng Ma & Ce Hao & Changmeng Liu & Zhanwei Liu, 2025. "Development of a melt pool characteristics detection platform based on multi-information fusion of temperature fields and photodiode signals in plasma arc welding," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2017-2037, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02157-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.