Predicting part distortion field in additive manufacturing: a data-driven framework
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-021-01902-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Masoumeh Aminzadeh & Thomas R. Kurfess, 2019. "Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2505-2523, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ahmed Mujtaba & Faisal Islam & Patrick Kaeding & Thomas Lindemann & B. Gangadhara Prusty, 2025. "Machine-learning based process monitoring for automated composites manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1095-1110, February.
- Ziyuan Xie & Fan Chen & Lu Wang & Wenjun Ge & Wentao Yan, 2024. "Data-driven prediction of keyhole features in metal additive manufacturing based on physics-based simulation," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2313-2326, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yong Ren & Qian Wang, 2022. "Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2239-2256, December.
- T. Herzog & M. Brandt & A. Trinchi & A. Sola & A. Molotnikov, 2024. "Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1407-1437, April.
- Jože M. Rožanec & Luka Bizjak & Elena Trajkova & Patrik Zajec & Jelle Keizer & Blaž Fortuna & Dunja Mladenić, 2024. "Active learning and novel model calibration measurements for automated visual inspection in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 1963-1984, June.
- Chen-Fu Chien & Jia-Yu Peng, 2025. "Bayesian inference for multi-label classification for root cause analysis and probe card maintenance decision support and an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1943-1958, March.
- Chunyang Xia & Zengxi Pan & Joseph Polden & Huijun Li & Yanling Xu & Shanben Chen, 2022. "Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1467-1482, June.
- Tamie Takeda Yokoyama & Satie Ledoux Takeda-Berger & Marco Aurélio Oliveira & Andre Hideto Futami & Luiz Veriano Oliveira Dalla Valentina & Enzo Morosini Frazzon, 2023. "Bayesian networks as a guide to value stream mapping for lean office implementation: a proposed framework," Operations Management Research, Springer, vol. 16(1), pages 49-79, March.
- Jingchang Li & Longchao Cao & Jiexiang Hu & Minhua Sheng & Qi Zhou & Peng Jin, 2022. "A prediction approach of SLM based on the ensemble of metamodels considering material efficiency, energy consumption, and tensile strength," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 687-702, March.
- Paromita Nath & Sankaran Mahadevan, 2023. "Probabilistic predictive control of porosity in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1085-1103, March.
- Nicholas Satterlee & Elisa Torresani & Eugene Olevsky & John S. Kang, 2024. "Automatic detection and characterization of porosities in cross-section images of metal parts produced by binder jetting using machine learning and image augmentation," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1281-1303, March.
- Zimeng Jiang & Aoming Zhang & Zhangdong Chen & Chenguang Ma & Zhenghui Yuan & Yifan Deng & Yingjie Zhang, 2024. "A deep convolutional network combining layerwise images and defect parameter vectors for laser powder bed fusion process anomalies classification," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2929-2959, August.
- Yilin Guo & Wen Feng Lu & Jerry Ying Hsi Fuh, 2021. "Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 347-359, February.
- Jingchang Li & Qi Zhou & Xufeng Huang & Menglei Li & Longchao Cao, 2023. "In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 853-867, February.
- Mohammad Borumand & Saideep Nannapaneni & Gurucharan Madiraddy & Michael P. Sealy & Sima Esfandiarpour Borujeni & Gisuk Hwang, 2025. "Smart process mapping of powder bed fusion additively manufactured metallic wicks using surrogate modeling," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1819-1833, March.
- Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
- Haijie Wang & Bo Li & Saifan Zhang & Fuzhen Xuan, 2025. "Traditional machine learning and deep learning for predicting melt-pool cross-sectional morphology of laser powder bed fusion additive manufacturing with thermographic monitoring," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2079-2104, March.
- Vivek Mahato & Muhannad Ahmed Obeidi & Dermot Brabazon & Pádraig Cunningham, 2022. "Detecting voids in 3D printing using melt pool time series data," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 845-852, March.
More about this item
Keywords
Additive manufacturing; Part distortions; Data-driven model; Self-organizing map; Group of adaptive models evolution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01902-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.