IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i6d10.1007_s10845-023-02183-4.html
   My bibliography  Save this article

A deep convolutional network combining layerwise images and defect parameter vectors for laser powder bed fusion process anomalies classification

Author

Listed:
  • Zimeng Jiang

    (South China University of Technology)

  • Aoming Zhang

    (South China University of Technology)

  • Zhangdong Chen

    (South China University of Technology)

  • Chenguang Ma

    (South China University of Technology)

  • Zhenghui Yuan

    (South China University of Technology)

  • Yifan Deng

    (South China University of Technology)

  • Yingjie Zhang

    (South China University of Technology)

Abstract

Defect detection is an essential way to ensure the quality of parts made by laser powder bed fusion (LPBF) and industrial cameras are one of the commonly used tools for defect monitoring. Different lighting environments affect the visibility of defects in the images, and the illumination condition becomes one of the most important factors affecting the defect detection effect of industrial cameras, but the modification of the equipment lighting environment will increase the complexity and cost of monitoring. In this study, only an off-axis CMOS camera monitoring system is used and the lighting facilities are not changed to improve the effect of defect detection under uneven lighting conditions. A dual-input convolutional neural network fusing defect parameter vectors and layerwise images is proposed for real-time online monitoring of defects in the LPBF process using a paraxial CMOS camera monitoring system. The model integrates the image and the parameter information related to defect generation, and can distinguish some defects that are not easily discerned by images alone. To a certain extent, it avoids the problem that the same defects are visually indistinguishable in images caused by uneven light distribution and reflections on metal surfaces. The results indicate that the method has better performance than the method with a single image input, with recognition accuracies above 80.00% for all defect categories. In addition, the method is more suitable for real-time online monitoring scenarios due to its low parameter number, short training time and fast prediction speed compared to classical deep learning algorithms.

Suggested Citation

  • Zimeng Jiang & Aoming Zhang & Zhangdong Chen & Chenguang Ma & Zhenghui Yuan & Yifan Deng & Yingjie Zhang, 2024. "A deep convolutional network combining layerwise images and defect parameter vectors for laser powder bed fusion process anomalies classification," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2929-2959, August.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02183-4
    DOI: 10.1007/s10845-023-02183-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02183-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02183-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingchang Li & Qi Zhou & Xufeng Huang & Menglei Li & Longchao Cao, 2023. "In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 853-867, February.
    2. Masoumeh Aminzadeh & Thomas R. Kurfess, 2019. "Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2505-2523, August.
    3. Hanxin Hu & Ting Sun, 2022. "The Applications of Machine Learning in Accounting and Auditing Research," Springer Books, in: Cheng-Few Lee & Alice C. Lee (ed.), Encyclopedia of Finance, edition 0, chapter 89, pages 2095-2115, Springer.
    4. Yingjie Zhang & Wentao Yan, 2023. "Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2557-2580, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Ren & Qian Wang, 2022. "Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2239-2256, December.
    2. T. Herzog & M. Brandt & A. Trinchi & A. Sola & A. Molotnikov, 2024. "Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1407-1437, April.
    3. Jože M. Rožanec & Luka Bizjak & Elena Trajkova & Patrik Zajec & Jelle Keizer & Blaž Fortuna & Dunja Mladenić, 2024. "Active learning and novel model calibration measurements for automated visual inspection in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 1963-1984, June.
    4. Aniruddha Gaikwad & Tammy Chang & Brian Giera & Nicholas Watkins & Saptarshi Mukherjee & Andrew Pascall & David Stobbe & Prahalada Rao, 2022. "In-process monitoring and prediction of droplet quality in droplet-on-demand liquid metal jetting additive manufacturing using machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2093-2117, October.
    5. Chen-Fu Chien & Jia-Yu Peng, 2025. "Bayesian inference for multi-label classification for root cause analysis and probe card maintenance decision support and an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1943-1958, March.
    6. Hao Jiang & Zhibin Zhao & Zilong Zhang & Xingwu Zhang & Chenxi Wang & Xuefeng Chen, 2025. "Qualitative and quantitative characterization of powder bed quality in laser powder-bed fusion additive manufacturing by multi-task learning," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2695-2707, April.
    7. Mengxuan Gao & Songmei Yuan & Jiayong Wei & Jin Niu & Zikang Zhang & Xiaoqi Li & Jiaqi Zhang & Ning Zhou & Mingrui Luo, 2024. "Optimization of processing parameters for waterjet-guided laser machining of SiC/SiC composites," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 4137-4157, December.
    8. Yuriko Nakao & Aya Ishino & Katsuhiko Kokubu & Hitoshi Okada, 2024. "Exploring visual communication in corporate sustainability reporting: Using image recognition with deep learning," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(4), pages 3210-3234, July.
    9. Chunyang Xia & Zengxi Pan & Joseph Polden & Huijun Li & Yanling Xu & Shanben Chen, 2022. "Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1467-1482, June.
    10. Yilin Guo & Wen Feng Lu & Jerry Ying Hsi Fuh, 2021. "Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 347-359, February.
    11. Jingchang Li & Qi Zhou & Xufeng Huang & Menglei Li & Longchao Cao, 2023. "In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 853-867, February.
    12. Mohammad Borumand & Saideep Nannapaneni & Gurucharan Madiraddy & Michael P. Sealy & Sima Esfandiarpour Borujeni & Gisuk Hwang, 2025. "Smart process mapping of powder bed fusion additively manufactured metallic wicks using surrogate modeling," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1819-1833, March.
    13. Gao, Baoyun & Peng, Shitong & Li, Tao & Wang, Fengtao & Guo, Jianan & Liu, Conghu & Zhang, Hongchao, 2024. "Integration of improved meta-heuristic and machine learning for optimizing energy efficiency in additive manufacturing process," Energy, Elsevier, vol. 306(C).
    14. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    15. Tamie Takeda Yokoyama & Satie Ledoux Takeda-Berger & Marco Aurélio Oliveira & Andre Hideto Futami & Luiz Veriano Oliveira Dalla Valentina & Enzo Morosini Frazzon, 2023. "Bayesian networks as a guide to value stream mapping for lean office implementation: a proposed framework," Operations Management Research, Springer, vol. 16(1), pages 49-79, March.
    16. Abderrachid Hamrani & Arvind Agarwal & Amine Allouhi & Dwayne McDaniel, 2024. "Applying machine learning to wire arc additive manufacturing: a systematic data-driven literature review," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2407-2439, August.
    17. Jingchang Li & Longchao Cao & Jiexiang Hu & Minhua Sheng & Qi Zhou & Peng Jin, 2022. "A prediction approach of SLM based on the ensemble of metamodels considering material efficiency, energy consumption, and tensile strength," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 687-702, March.
    18. Jian Qin & Yipeng Wang & Jialuo Ding & Stewart Williams, 2022. "Optimal droplet transfer mode maintenance for wire + arc additive manufacturing (WAAM) based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2179-2191, October.
    19. Haijie Wang & Bo Li & Saifan Zhang & Fuzhen Xuan, 2025. "Traditional machine learning and deep learning for predicting melt-pool cross-sectional morphology of laser powder bed fusion additive manufacturing with thermographic monitoring," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2079-2104, March.
    20. Paromita Nath & Sankaran Mahadevan, 2023. "Probabilistic predictive control of porosity in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1085-1103, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02183-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.