IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i3d10.1007_s10845-023-02091-7.html
   My bibliography  Save this article

Powder bed monitoring via digital image analysis in additive manufacturing

Author

Listed:
  • A. Boschetto

    (Sapienza University of Rome)

  • L. Bottini

    (Sapienza University of Rome)

  • S. Vatanparast

    (Sapienza University of Rome)

Abstract

Due to the nature of Selective Laser Melting process, the built parts suffer from high chances of defects formation. Powders quality have a significant impact on the final attributes of SLM-manufactured items. From a processing standpoint, it is critical to ensure proper powder distribution and compaction in each layer of the powder bed, which is impacted by particle size distribution, packing density, flowability, and sphericity of the powder particles. Layer-by-layer study of the process can provide better understanding of the effect of powder bed on the final part quality. Image-based processing technique could be used to examine the quality of parts fabricated by Selective Laser Melting through layerwise monitoring and to evaluate the results achieved by other techniques. In this paper, a not supervised methodology based on Digital Image Processing through the build-in machine camera is proposed. Since the limitation of the optical system in terms of resolution, positioning, lighting, field-of-view, many efforts were paid to the calibration and to the data processing. Its capability to individuate possible defects on SLM parts was evaluated by a Computer Tomography results verification.

Suggested Citation

  • A. Boschetto & L. Bottini & S. Vatanparast, 2024. "Powder bed monitoring via digital image analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 991-1011, March.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:3:d:10.1007_s10845-023-02091-7
    DOI: 10.1007/s10845-023-02091-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02091-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02091-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiden A. Martin & Nicholas P. Calta & Saad A. Khairallah & Jenny Wang & Phillip J. Depond & Anthony Y. Fong & Vivek Thampy & Gabe M. Guss & Andrew M. Kiss & Kevin H. Stone & Christopher J. Tassone & J, 2019. "Dynamics of pore formation during laser powder bed fusion additive manufacturing," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Chenang Liu & Zhenyu (James) Kong & Suresh Babu & Chase Joslin & James Ferguson, 2021. "An integrated manifold learning approach for high-dimensional data feature extractions and its applications to online process monitoring of additive manufacturing," IISE Transactions, Taylor & Francis Journals, vol. 53(11), pages 1215-1230, November.
    3. Jie Yang & Shaowen Lu & Liangyong Wang, 2020. "Fused magnesia manufacturing process: a survey," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 327-350, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihoon Chung & Bo Shen & Zhenyu James Kong, 2024. "Anomaly detection in additive manufacturing processes using supervised classification with imbalanced sensor data based on generative adversarial network," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2387-2406, June.
    2. Kai Zhang & Yunhui Chen & Sebastian Marussi & Xianqiang Fan & Maureen Fitzpatrick & Shishira Bhagavath & Marta Majkut & Bratislav Lukic & Kudakwashe Jakata & Alexander Rack & Martyn A. Jones & Junji S, 2024. "Pore evolution mechanisms during directed energy deposition additive manufacturing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Zhangyue Shi & Yuxuan Li & Chenang Liu, 2025. "Knowledge distillation-based information sharing for online process monitoring in decentralized manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2177-2192, March.
    4. Wiesberg, Igor Lapenda & de Medeiros, José Luiz & Paes de Mello, Raphael V. & Santos Maia, Jeiveison G.S. & Bastos, João Bruno V. & Araújo, Ofélia de Queiroz F., 2021. "Bioenergy production from sugarcane bagasse with carbon capture and storage: Surrogate models for techno-economic decisions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Zhangyue Shi & Abdullah Al Mamun & Chen Kan & Wenmeng Tian & Chenang Liu, 2023. "An LSTM-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1815-1831, April.
    6. Paromita Nath & Sankaran Mahadevan, 2023. "Probabilistic predictive control of porosity in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1085-1103, March.
    7. Ziyuan Xie & Fan Chen & Lu Wang & Wenjun Ge & Wentao Yan, 2024. "Data-driven prediction of keyhole features in metal additive manufacturing based on physics-based simulation," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2313-2326, June.
    8. Hussein A. Taha & Soumaya Yacout & Yasser Shaban, 2023. "Autonomous self-healing mechanism for a CNC milling machine based on pattern recognition," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2185-2205, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:3:d:10.1007_s10845-023-02091-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.