IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i5d10.1007_s10845-023-02163-8.html
   My bibliography  Save this article

Anomaly detection in additive manufacturing processes using supervised classification with imbalanced sensor data based on generative adversarial network

Author

Listed:
  • Jihoon Chung

    (Virginia Tech)

  • Bo Shen

    (NJIT)

  • Zhenyu James Kong

    (Virginia Tech)

Abstract

Supervised classification methods have been widely utilized for the quality assurance of the advanced manufacturing process, such as additive manufacturing (AM) for anomaly (defects) detection. However, since abnormal states (with defects) occur much less frequently than normal ones (without defects) in a manufacturing process, the number of sensor data samples collected from a normal state is usually much more than that from an abnormal state. This issue causes imbalanced training data for classification analysis, thus deteriorating the performance of detecting abnormal states in the process. It is beneficial to generate effective artificial sample data for the abnormal states to make a more balanced training set. To achieve this goal, this paper proposes a novel data augmentation method based on a generative adversarial network (GAN) using additive manufacturing process image sensor data. The novelty of our approach is that a standard GAN and classifier are jointly optimized with techniques to stabilize the learning process of standard GAN. The diverse and high-quality generated samples provide balanced training data to the classifier. The iterative optimization between GAN and classifier provides the high-performance classifier. The effectiveness of the proposed method is validated by both open-source data and real-world case studies in polymer and metal AM processes.

Suggested Citation

  • Jihoon Chung & Bo Shen & Zhenyu James Kong, 2024. "Anomaly detection in additive manufacturing processes using supervised classification with imbalanced sensor data based on generative adversarial network," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2387-2406, June.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02163-8
    DOI: 10.1007/s10845-023-02163-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02163-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02163-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaveh Bastani & Prahalad K. Rao & Zhenyu (James) Kong, 2016. "An online sparse estimation-based classification approach for real-time monitoring in advanced manufacturing processes from heterogeneous sensor data," IISE Transactions, Taylor & Francis Journals, vol. 48(7), pages 579-598, July.
    2. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    3. Dowson, D. C. & Landau, B. V., 1982. "The Fréchet distance between multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 12(3), pages 450-455, September.
    4. Gabriel Rodriguez Garcia & Gabriel Michau & Mélanie Ducoffe & Jayant Sen Gupta & Olga Fink, 2022. "Temporal signals to images: Monitoring the condition of industrial assets with deep learning image processing algorithms," Journal of Risk and Reliability, , vol. 236(4), pages 617-627, August.
    5. Chenang Liu & Zhenyu (James) Kong & Suresh Babu & Chase Joslin & James Ferguson, 2021. "An integrated manifold learning approach for high-dimensional data feature extractions and its applications to online process monitoring of additive manufacturing," IISE Transactions, Taylor & Francis Journals, vol. 53(11), pages 1215-1230, November.
    6. Longhui Zhou & Hongfeng Tao & Wojciech Paszke & Vladimir Stojanovic & Huizhong Yang, 2020. "PD-Type Iterative Learning Control for Uncertain Spatially Interconnected Systems," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    2. Zhangyue Shi & Yuxuan Li & Chenang Liu, 2025. "Knowledge distillation-based information sharing for online process monitoring in decentralized manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2177-2192, March.
    3. Zhangyue Shi & Abdullah Al Mamun & Chen Kan & Wenmeng Tian & Chenang Liu, 2023. "An LSTM-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1815-1831, April.
    4. Elham Yousefi & Luc Pronzato & Markus Hainy & Werner G. Müller & Henry P. Wynn, 2023. "Discrimination between Gaussian process models: active learning and static constructions," Statistical Papers, Springer, vol. 64(4), pages 1275-1304, August.
    5. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    6. Zejun Tong & Chun Zhang & Xiaotai Wu & Pengcheng Gao & Shuang Wu & Haoyu Li, 2023. "Economic Optimization Control Method of Grid-Connected Microgrid Based on Improved Pinning Consensus," Energies, MDPI, vol. 16(3), pages 1-31, January.
    7. Knott, Martin & Smith, Cyril, 2006. "Choosing joint distributions so that the variance of the sum is small," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1757-1765, September.
    8. Rippl, Thomas & Munk, Axel & Sturm, Anja, 2016. "Limit laws of the empirical Wasserstein distance: Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 90-109.
    9. Siyamalan Manivannan, 2023. "Automatic quality inspection in additive manufacturing using semi-supervised deep learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3091-3108, October.
    10. Mansour, Shaza H. & Azzam, Sarah M. & Hasanien, Hany M. & Tostado-Veliz, Marcos & Alkuhayli, Abdulaziz & Jurado, Francisco, 2024. "Wasserstein generative adversarial networks-based photovoltaic uncertainty in a smart home energy management system including battery storage devices," Energy, Elsevier, vol. 306(C).
    11. Jia Liu & Jiafeng Ye & Daniel Silva Izquierdo & Aleksandr Vinel & Nima Shamsaei & Shuai Shao, 2023. "A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3249-3275, December.
    12. Hong Seok Park & Dinh Son Nguyen & Thai Le-Hong & Xuan Tran, 2022. "Machine learning-based optimization of process parameters in selective laser melting for biomedical applications," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1843-1858, August.
    13. Javid Akhavan & Jiaqi Lyu & Souran Manoochehri, 2024. "A deep learning solution for real-time quality assessment and control in additive manufacturing using point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1389-1406, March.
    14. Zhongzhi Lawrence He, 2018. "Comparing Asset Pricing Models: Distance-based Metrics and Bayesian Interpretations," Papers 1803.01389, arXiv.org.
    15. Brandon Tam & Silvana M. Pesenti, 2025. "Dimension Reduction of Distributionally Robust Optimization Problems," Papers 2504.06381, arXiv.org.
    16. Runquan Xiao & Yanling Xu & Zhen Hou & Chao Chen & Shanben Chen, 2022. "An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1419-1432, June.
    17. Lü, Shao-Yu & Jin, Xiao-Zheng & Wu, Xiao-Ming & Ding, Li-Jian & Chi, Jing, 2022. "Robust adaptive event-triggered fault-tolerant control for time-varying systems against perturbations and faulty actuators," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    18. Mordant, Gilles & Segers, Johan, 2022. "Measuring dependence between random vectors via optimal transport," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    19. A. Boschetto & L. Bottini & S. Vatanparast, 2024. "Powder bed monitoring via digital image analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 991-1011, March.
    20. Whiteley, Nick, 2021. "Dimension-free Wasserstein contraction of nonlinear filters," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 31-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02163-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.