IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v53y2021i11p1215-1230.html
   My bibliography  Save this article

An integrated manifold learning approach for high-dimensional data feature extractions and its applications to online process monitoring of additive manufacturing

Author

Listed:
  • Chenang Liu
  • Zhenyu (James) Kong
  • Suresh Babu
  • Chase Joslin
  • James Ferguson

Abstract

As an effective dimension reduction and feature extraction technique, manifold learning has been successfully applied to high-dimensional data analysis. With the rapid development of sensor technology, a large amount of high-dimensional data such as image streams can be easily available. Thus, a promising application of manifold learning is in the field of sensor signal analysis, particular for the applications of online process monitoring and control using high-dimensional data. The objective of this study is to develop a manifold learning-based feature extraction method for process monitoring of Additive Manufacturing (AM) using online sensor data. Due to the non-parametric nature of most existing manifold learning methods, their performance in terms of computational efficiency, as well as noise resistance has yet to be improved. To address this issue, this study proposes an integrated manifold learning approach termed multi-kernel metric learning embedded isometric feature mapping (MKML-ISOMAP) for dimension reduction and feature extraction of online high-dimensional sensor data such as images. Based on the extracted features with the utilization of supervised classification and regression methods, an online process monitoring methodology for AM is implemented to identify the actual process quality status. In the numerical simulation and real-world case studies, the proposed method demonstrates excellent performance in both prediction accuracy and computational efficiency.

Suggested Citation

  • Chenang Liu & Zhenyu (James) Kong & Suresh Babu & Chase Joslin & James Ferguson, 2021. "An integrated manifold learning approach for high-dimensional data feature extractions and its applications to online process monitoring of additive manufacturing," IISE Transactions, Taylor & Francis Journals, vol. 53(11), pages 1215-1230, November.
  • Handle: RePEc:taf:uiiexx:v:53:y:2021:i:11:p:1215-1230
    DOI: 10.1080/24725854.2020.1849876
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2020.1849876
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2020.1849876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhangyue Shi & Abdullah Al Mamun & Chen Kan & Wenmeng Tian & Chenang Liu, 2023. "An LSTM-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1815-1831, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:53:y:2021:i:11:p:1215-1230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.