IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.06381.html

Bounds for Distributionally Robust Optimization Problems

Author

Listed:
  • Brandon Tam
  • Silvana M. Pesenti

Abstract

We study distributionally robust optimization (DRO) problems with uncertainty sets consisting of high-dimensional random vectors that are close in the multivariate Wasserstein distance to a reference random vector. We give conditions when the images of these sets under scalar-valued aggregation functions are contained in and contain uncertainty sets of univariate random variables defined via a univariate Wasserstein distance. This provides lower and upper bounds for the solution to general multivariate DRO problems that are computationally tractable. Furthermore, we generalize the results to uncertainty sets characterized by Bregman-Wasserstein divergences, which allows for asymmetric deviations from the reference random vector. Moreover, for DRO problems with risk measure criterion in the class of signed Choquet integrals, we derive semi-analytic formulae for the upper and lower bounds and the distribution that attains these bounds.

Suggested Citation

  • Brandon Tam & Silvana M. Pesenti, 2025. "Bounds for Distributionally Robust Optimization Problems," Papers 2504.06381, arXiv.org, revised Jan 2026.
  • Handle: RePEc:arx:papers:2504.06381
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.06381
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    2. Silvana M. Pesenti & Steven Vanduffel & Yang Yang & Jing Yao, 2024. "Optimal payoff under Bregman-Wasserstein divergence constraints," Papers 2411.18397, arXiv.org, revised Nov 2025.
    3. Silvana M. Pesenti, 2021. "Reverse Sensitivity Analysis for Risk Modelling," Papers 2107.01065, arXiv.org, revised May 2022.
    4. Dowson, D. C. & Landau, B. V., 1982. "The Fréchet distance between multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 12(3), pages 450-455, September.
    5. Silvana M. Pesenti & Steven Vanduffel, 2023. "Optimal Transport Divergences induced by Scoring Functions," Papers 2311.12183, arXiv.org, revised Apr 2024.
    6. Axel Munk & Claudia Czado, 1998. "Nonparametric validation of similar distributions and assessment of goodness of fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 223-241.
    7. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    8. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    9. de Leeuw, Jan & Hornik, Kurt & Mair, Patrick, 2009. "Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i05).
    10. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    11. Silvana M. Pesenti, 2022. "Reverse Sensitivity Analysis for Risk Modelling," Risks, MDPI, vol. 10(7), pages 1-23, July.
    12. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    13. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    14. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    15. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    16. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    17. James E. Smith & Robert L. Winkler, 2006. "The Optimizer's Curse: Skepticism and Postdecision Surprise in Decision Analysis," Management Science, INFORMS, vol. 52(3), pages 311-322, March.
    18. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    19. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    20. Marlon R. Moresco & Mélina Mailhot & Silvana M. Pesenti, 2025. "Uncertainty Propagation and Dynamic Robust Risk Measures," Mathematics of Operations Research, INFORMS, vol. 50(3), pages 1939-1964, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haiyan Liu & Bin Wang & Ruodu Wang & Sheng Chao Zhuang, 2023. "Distorted optimal transport," Papers 2308.11238, arXiv.org, revised May 2025.
    2. Liu, Peng & Wang, Ruodu & Wei, Linxiao, 2020. "Is the inf-convolution of law-invariant preferences law-invariant?," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 144-154.
    3. Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org, revised Feb 2022.
    4. Peng Liu & Steven Vanduffel & Yi Xia, 2025. "Robust distortion risk metrics and portfolio optimization," Papers 2511.08662, arXiv.org.
    5. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    6. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    7. Fabio Bellini & Tolulope Fadina & Ruodu Wang & Yunran Wei, 2020. "Parametric measures of variability induced by risk measures," Papers 2012.05219, arXiv.org, revised Apr 2022.
    8. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    9. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    10. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    11. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    12. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    13. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.
    14. Yuting Su & Taizhong Hu & Zhenfeng Zou, 2025. "Extreme-case Range Value-at-Risk under Increasing Failure Rate," Papers 2506.23073, arXiv.org.
    15. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    16. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    17. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    18. Mengshuo Zhao & Narayanaswamy Balakrishnan & Chuancun Yin & Hui Shao, 2024. "Extremal cases of distortion risk measures with partial information," Papers 2404.13637, arXiv.org, revised Dec 2025.
    19. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    20. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.06381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.