IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.12856.html
   My bibliography  Save this paper

Uncertainty Propagation and Dynamic Robust Risk Measures

Author

Listed:
  • Marlon Moresco
  • M'elina Mailhot
  • Silvana M. Pesenti

Abstract

We introduce a framework for quantifying propagation of uncertainty arising in a dynamic setting. Specifically, we define dynamic uncertainty sets designed explicitly for discrete stochastic processes over a finite time horizon. These dynamic uncertainty sets capture the uncertainty surrounding stochastic processes and models, accounting for factors such as distributional ambiguity. Examples of uncertainty sets include those induced by the Wasserstein distance and f-divergences. We further define dynamic robust risk measures as the supremum of all candidates' risks within the uncertainty set. In an axiomatic way, we discuss conditions on the uncertainty sets that lead to well-known properties of dynamic robust risk measures, such as convexity and coherence. Furthermore, we discuss the necessary and sufficient properties of dynamic uncertainty sets that lead to time-consistencies of dynamic robust risk measures. We find that uncertainty sets stemming from f-divergences lead to strong time-consistency while the Wasserstein distance results in a new time-consistent notion of weak recursiveness. Moreover, we show that a dynamic robust risk measure is strong time-consistent or weak recursive if and only if it admits a recursive representation of one-step conditional robust risk measures arising from static uncertainty sets.

Suggested Citation

  • Marlon Moresco & M'elina Mailhot & Silvana M. Pesenti, 2023. "Uncertainty Propagation and Dynamic Robust Risk Measures," Papers 2308.12856, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2308.12856
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.12856
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    2. ,, 2011. "Dynamic choice under ambiguity," Theoretical Economics, Econometric Society, vol. 6(3), September.
    3. Beatrice Acciaio & Hans Föllmer & Irina Penner, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," Finance and Stochastics, Springer, vol. 16(4), pages 669-709, October.
    4. Ariel Neufeld & Julian Sester & Mario v{S}iki'c, 2022. "Markov Decision Processes under Model Uncertainty," Papers 2206.06109, arXiv.org, revised Jan 2023.
    5. Ariel Neufeld & Julian Sester & Mario Šikić, 2023. "Markov decision processes under model uncertainty," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 618-665, July.
    6. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2016. "A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective," Papers 1603.09030, arXiv.org, revised Jan 2017.
    7. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2009. "Constructing Risk Measures from Uncertainty Sets," Operations Research, INFORMS, vol. 57(5), pages 1129-1141, October.
    8. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2018. "A Unified Approach to Time Consistency of Dynamic Risk Measures and Dynamic Performance Measures in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 204-221, February.
    9. Jun-ya Gotoh & Akiko Takeda, 2011. "On the role of norm constraints in portfolio selection," Computational Management Science, Springer, vol. 8(4), pages 323-353, November.
    10. A. Jobert & L. C. G. Rogers, 2008. "Valuations And Dynamic Convex Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 1-22, January.
    11. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    12. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    14. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    15. Berend Roorda & J. M. Schumacher & Jacob Engwerda, 2005. "Coherent Acceptability Measures In Multiperiod Models," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 589-612, October.
    16. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    17. Marco Frittelli & Giacomo Scandolo, 2006. "Risk Measures And Capital Requirements For Processes," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 589-612, October.
    18. Patrick Cheridito & Michael Kupper, 2011. "Composition Of Time-Consistent Dynamic Monetary Risk Measures In Discrete Time," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 137-162.
    19. Cheridito, Patrick & Delbaen, Freddy & Kupper, Michael, 2004. "Coherent and convex monetary risk measures for bounded càdlàg processes," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 1-22, July.
    20. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglbock & Manu Eder, 2019. "Adapted Wasserstein Distances and Stability in Mathematical Finance," Papers 1901.07450, arXiv.org, revised May 2020.
    21. Tomasz R. Bielecki & Igor Cialenco & Andrzej Ruszczy'nski, 2022. "Risk Filtering and Risk-Averse Control of Markovian Systems Subject to Model Uncertainty," Papers 2206.09235, arXiv.org.
    22. Roger J. A. Laeven & Emanuela Rosazza Gianin & Marco Zullino, 2023. "Dynamic Return and Star-Shaped Risk Measures via BSDEs," Papers 2307.03447, arXiv.org, revised Jul 2023.
    23. Sina Tutsch, 2008. "Update rules for convex risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 833-843.
    24. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    25. Georg Pflug & David Wozabal, 2007. "Ambiguity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 435-442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcelo Righi, 2024. "Robust convex risk measures," Papers 2406.12999, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    2. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    3. Daniel Bartl, 2016. "Conditional nonlinear expectations," Papers 1612.09103, arXiv.org, revised Mar 2019.
    4. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2018. "A Unified Approach to Time Consistency of Dynamic Risk Measures and Dynamic Performance Measures in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 204-221, February.
    5. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    6. Yanhong Chen & Zachary Feinstein, 2022. "Set-valued dynamic risk measures for processes and for vectors," Finance and Stochastics, Springer, vol. 26(3), pages 505-533, July.
    7. Eisele Karl-Theodor & Kupper Michael, 2016. "Asymptotically stable dynamic risk assessments," Statistics & Risk Modeling, De Gruyter, vol. 33(1-2), pages 41-50, September.
    8. Aloisio Araujo & Alain Chateauneuf & José Heleno Faro & Bruno Holanda, 2019. "Updating pricing rules," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(2), pages 335-361, September.
    9. Roorda Berend & Schumacher Hans, 2013. "Membership conditions for consistent families of monetary valuations," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 255-280, August.
    10. Beatrice Acciaio & Hans Föllmer & Irina Penner, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," Finance and Stochastics, Springer, vol. 16(4), pages 669-709, October.
    11. Beatrice Acciaio & Irina Penner, 2010. "Dynamic risk measures," Papers 1002.3794, arXiv.org.
    12. Beatrice Acciaio & Hans Foellmer & Irina Penner, 2010. "Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles," Papers 1002.3627, arXiv.org.
    13. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    14. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    15. Saul Jacka & Seb Armstrong & Abdelkarem Berkaoui, 2017. "On representing and hedging claims for coherent risk measures," Papers 1703.03638, arXiv.org, revised Feb 2018.
    16. Alexander S. Cherny, 2009. "Capital Allocation And Risk Contribution With Discrete‐Time Coherent Risk," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 13-40, January.
    17. Zhiping Chen & Jia Liu & Gang Li & Zhe Yan, 2016. "Composite time-consistent multi-period risk measure and its application in optimal portfolio selection," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 515-540, October.
    18. Fasen Vicky & Svejda Adela, 2012. "Time consistency of multi-period distortion measures," Statistics & Risk Modeling, De Gruyter, vol. 29(2), pages 133-153, June.
    19. E. Kromer & L. Overbeck & K. Zilch, 2019. "Dynamic systemic risk measures for bounded discrete time processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(1), pages 77-108, August.
    20. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.12856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.