IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.05241.html
   My bibliography  Save this paper

Periodic evaluation of defined-contribution pension fund: A dynamic risk measure approach

Author

Listed:
  • Wanting He
  • Wenyuan Li
  • Yunran Wei

Abstract

This paper introduces an innovative framework for the periodic evaluation of defined-contribution pension funds. The performance of the pension fund is evaluated not only at retirement, but also within the interim periods. In contrast to the traditional literature, we set the dynamic risk measure as the criterion and manage the tail risk of the pension fund dynamically. To effectively interact with the stochastic environment, a model-free reinforcement learning algorithm is proposed to search for optimal investment and insurance strategies. Using U.S. data, we calibrate pension members' mortality rates and enhance mortality projections through a Lee-Carter model. Our numerical results indicate that periodic evaluations lead to more risk-averse strategies, while mortality improvements encourage more risk-seeking behaviors.

Suggested Citation

  • Wanting He & Wenyuan Li & Yunran Wei, 2025. "Periodic evaluation of defined-contribution pension fund: A dynamic risk measure approach," Papers 2508.05241, arXiv.org.
  • Handle: RePEc:arx:papers:2508.05241
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.05241
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haberman, Steven & Vigna, Elena, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 35-69, August.
    2. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    3. Paul Milgrom & Ilya Segal, 2002. "Envelope Theorems for Arbitrary Choice Sets," Econometrica, Econometric Society, vol. 70(2), pages 583-601, March.
    4. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    5. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    6. Hua Chen & Samuel H. Cox, 2009. "Modeling Mortality With Jumps: Applications to Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 727-751, September.
    7. Arkes, Hal R. & Hirshleifer, David & Jiang, Danling & Lim, Sonya, 2008. "Reference point adaptation: Tests in the domain of security trading," Organizational Behavior and Human Decision Processes, Elsevier, vol. 105(1), pages 67-81, January.
    8. Han, Nan-wei & Hung, Mao-wei, 2012. "Optimal asset allocation for DC pension plans under inflation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 172-181.
    9. Marlon Moresco & M'elina Mailhot & Silvana M. Pesenti, 2023. "Uncertainty Propagation and Dynamic Robust Risk Measures," Papers 2308.12856, arXiv.org, revised Feb 2024.
    10. Guan, Guohui & Liang, Zongxia & Xia, Yi, 2023. "Optimal management of DC pension fund under the relative performance ratio and VaR constraint," European Journal of Operational Research, Elsevier, vol. 305(2), pages 868-886.
    11. McShane, Blake & Adrian, Moshe & Bradlow, Eric T & Fader, Peter S, 2008. "Count Models Based on Weibull Interarrival Times," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 369-378.
    12. Şule Şahin & Selin Özen, 2024. "A Quantitative Comparison of Mortality Models with Jumps: Pre- and Post-COVID Insights on Insurance Pricing," Risks, MDPI, vol. 12(3), pages 1-24, March.
    13. Munk, Claus & Sørensen, Carsten, 2010. "Dynamic asset allocation with stochastic income and interest rates," Journal of Financial Economics, Elsevier, vol. 96(3), pages 433-462, June.
    14. Baltas, I. & Dopierala, L. & Kolodziejczyk, K. & Szczepański, M. & Weber, G.-W. & Yannacopoulos, A.N., 2022. "Optimal management of defined contribution pension funds under the effect of inflation, mortality and uncertainty," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1162-1174.
    15. Yun Shi & Xiangyu Cui & Jing Yao & Duan Li, 2015. "Dynamic Trading with Reference Point Adaptation and Loss Aversion," Operations Research, INFORMS, vol. 63(4), pages 789-806, August.
    16. Li, Wenyuan & Wei, Pengyu, 2024. "Optimal defined-contribution pension management with financial and mortality risks," ASTIN Bulletin, Cambridge University Press, vol. 54(3), pages 546-568, September.
    17. Pagnoncelli, Bernardo K. & Homem-de-Mello, Tito & Lagos, Guido & Castañeda, Pablo & García, Javier, 2024. "Solving constrained consumption–investment problems by decomposition algorithms," European Journal of Operational Research, Elsevier, vol. 319(1), pages 292-302.
    18. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    19. Yanwei Jia & Xun Yu Zhou, 2021. "Policy Gradient and Actor-Critic Learning in Continuous Time and Space: Theory and Algorithms," Papers 2111.11232, arXiv.org, revised Jul 2022.
    20. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    21. Yanwei Jia & Xun Yu Zhou, 2021. "Policy Evaluation and Temporal-Difference Learning in Continuous Time and Space: A Martingale Approach," Papers 2108.06655, arXiv.org, revised Feb 2022.
    22. Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
    23. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    2. Guan, Guohui & Liang, Zongxia, 2016. "A stochastic Nash equilibrium portfolio game between two DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 237-244.
    3. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    4. Pengyu Wei & Charles Yang, 2023. "Optimal investment for defined-contribution pension plans under money illusion," Review of Quantitative Finance and Accounting, Springer, vol. 61(2), pages 729-753, August.
    5. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    6. Guan, Guohui & Liang, Zongxia & Xia, Yi, 2023. "Optimal management of DC pension fund under the relative performance ratio and VaR constraint," European Journal of Operational Research, Elsevier, vol. 305(2), pages 868-886.
    7. He, Lin & Liang, Zongxia, 2013. "Optimal investment strategy for the DC plan with the return of premiums clauses in a mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 643-649.
    8. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    9. Sun, Jingyun & Li, Zhongfei & Zeng, Yan, 2016. "Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 158-172.
    10. Zhang, Ling & Zhang, Hao & Yao, Haixiang, 2018. "Optimal investment management for a defined contribution pension fund under imperfect information," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 210-224.
    11. Han, Nan-Wei & Hung, Mao-Wei, 2015. "The investment management for a downside-protected equity-linked annuity under interest rate risk," Finance Research Letters, Elsevier, vol. 13(C), pages 113-124.
    12. Henrique Ferreira Morici & Elena Vigna, 2023. "Optimal additional voluntary contribution in DC pension schemes to manage inadequacy risk," Carlo Alberto Notebooks 699 JEL Classification: C, Collegio Carlo Alberto.
    13. Yao, Haixiang & Chen, Ping & Li, Xun, 2016. "Multi-period defined contribution pension funds investment management with regime-switching and mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 103-113.
    14. Menoncin, Francesco & Vigna, Elena, 2017. "Mean–variance target-based optimisation for defined contribution pension schemes in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 172-184.
    15. Huang, Hong-Chih & Lee, Yung-Tsung, 2020. "A study of the differences among representative investment strategies," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 131-149.
    16. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    17. Guohui Guan & Zongxia Liang & Yi xia, 2021. "Optimal management of DC pension fund under relative performance ratio and VaR constraint," Papers 2103.04352, arXiv.org.
    18. Blake, David & Wright, Douglas & Zhang, Yumeng, 2013. "Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 195-209.
    19. Bernardino, Wilton & Falcão, Rodrigo & Jr., João & Ospina, Raydonal & de Souza, Filipe Costa & Correia, José Jonas Alves, 2025. "A study of asset and liability management applied to Brazilian pension funds," European Journal of Operational Research, Elsevier, vol. 322(3), pages 1059-1076.
    20. Alessandro Milazzo & Elena Vigna, 2018. "The Italian Pension Gap: A Stochastic Optimal Control Approach," Risks, MDPI, vol. 6(2), pages 1-20, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.05241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.