IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion

  • Blake, David
  • Wright, Douglas
  • Zhang, Yumeng

Assuming the loss aversion framework of Tversky and Kahneman (1992), stochastic investment and labour income processes, and a path-dependent fund target, we show that the optimal investment strategy for defined contribution pension plan members is a target-driven ‘threshold’ strategy, whereby the equity allocation is increased if the accumulating fund is below target and is decreased if it is above. However, if the fund is sufficiently above target, the optimal investment strategy switches to ‘portfolio insurance’. We show that the risk of failing to attain the target replacement ratio is significantly lower with target-driven strategies than with those associated with the maximisation of expected utility.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

Volume (Year): 37 (2013)
Issue (Month): 1 ()
Pages: 195-209

in new window

Handle: RePEc:eee:dyncon:v:37:y:2013:i:1:p:195-209
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Vigna, Elena & Haberman, Steven, 2001. "Optimal investment strategy for defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 233-262, April.
  2. Mitchell, Olivia S. & Utkus, Stephen P. (ed.), 2004. "Pension Design and Structure: New Lessons from Behavioral Finance," OUP Catalogue, Oxford University Press, number 9780199273393, July.
  3. Brigitte C. Madrian & Dennis F. Shea, 2001. "The Power of Suggestion: Inertia in 401(k) Participation and Savings Behavior," The Quarterly Journal of Economics, Oxford University Press, vol. 116(4), pages 1149-1187.
  4. repec:tpr:qjecon:v:112:y:1997:i:2:p:631-45 is not listed on IDEAS
  5. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
  6. Steffensen, Mogens, 2011. "Optimal consumption and investment under time-varying relative risk aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 659-667, May.
  7. Berkelaar, A.B. & Kouwenberg, R.R.P., 2000. "Optimal portfolio choice under loss aversion," Econometric Institute Research Papers EI 2000-08/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  8. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942, July.
  9. Gneezy, U. & Potters, J.J.M., 1996. "An experiment on risk taking and evaluation periods," Discussion Paper 1996-61, Tilburg University, Center for Economic Research.
  10. Eugene Fama & F. & Kenneth R. French, . "The Equity Premium."," CRSP working papers 522, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
  11. Blake, David & Cairns, Andrew J. G. & Dowd, Kevin, 2001. "Pensionmetrics: stochastic pension plan design and value-at-risk during the accumulation phase," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 187-215, October.
  12. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-91, March.
  13. Gomes, Francisco J & Michaelides, Alexander, 2005. "Optimal Life-Cycle Asset Allocation: Understanding the Empirical Evidence," CEPR Discussion Papers 4853, C.E.P.R. Discussion Papers.
  14. Gerrard, Russell & Haberman, Steven & Vigna, Elena, 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 321-342, October.
  15. Matthew Rabin & Richard H. Thaler, 2001. "Anomalies: Risk Aversion," Journal of Economic Perspectives, American Economic Association, vol. 15(1), pages 219-232, Winter.
  16. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
  17. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, Oxford University Press, vol. 110(1), pages 73-92.
  18. Tversky, Amos & Kahneman, Daniel, 1992. " Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
  19. David Blake & Andrew Cairns & Kevin Dowd, 2007. "The Impact of Occupation and Gender on Pensions from Defined Contribution Plans," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan, vol. 32(4), pages 458-482, October.
  20. Emms, Paul, 2012. "Lifetime investment and consumption using a defined-contribution pension scheme," Journal of Economic Dynamics and Control, Elsevier, vol. 36(9), pages 1303-1321.
  21. Francisco J. Gomes, 2005. "Portfolio Choice and Trading Volume with Loss-Averse Investors," The Journal of Business, University of Chicago Press, vol. 78(2), pages 675-706, March.
  22. Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
  23. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, June.
  24. Haberman, Steven & Vigna, Elena, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 35-69, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:37:y:2013:i:1:p:195-209. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.