IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-03252329.html

Updating pricing rules

Author

Listed:
  • Aloisio Araujo

    (IMPA - Instituto Nacional de Matemática Pura e Aplicada, FGV - Fundacao Getulio Vargas [Rio de Janeiro])

  • Alain Chateauneuf

    (IPAG Business School, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • José Heleno Faro

    (Instituto de Ensino e Pesquisa (Brazil) - Insper Institute of Education and Research)

  • Bruno Holanda

    (UFG - Universidade Federal de Goiás [Goiânia])

Abstract

This paper studies the problem of updating the super-replication prices of arbitrage-free finite financial markets with a frictionless bond. Any super-replication price is a pricing rule represented as the support function of some polytope of probabilities containing at least one strict positive probability, which captures the closure of the set of risk-neutral probabilities of any underlying market consistent with the given pricing rule. We show that a weak form of dynamic consistency characterizes the full (prior-by-prior) Bayesian updating of pricing rules. In order to study the problem of updating pricing rules revealing incomplete markets without frictions on all tradable securities, we first show that the corresponding polytope of probabilities must be non-expansible. We find that the full Bayesian updating does not preserve non-expansibility, unless a condition of non-trivial updating is satisfied. Finally, we show that the full Bayesian updating of pricing rules of efficient complete markets is completely stable. We also show that efficient complete markets with uniform bid–ask spreads are stable under full Bayesian updating, while efficient complete markets that fulfill the put–call parity are stable only under a Choquet pricing rule computed with respect to a regular concave nonadditive risk-neutral probability.

Suggested Citation

  • Aloisio Araujo & Alain Chateauneuf & José Heleno Faro & Bruno Holanda, 2019. "Updating pricing rules," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03252329, HAL.
  • Handle: RePEc:hal:cesptp:hal-03252329
    DOI: 10.1007/s00199-018-1125-9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    • Aloisio Araujo & Alain Chateauneuf & José Heleno Faro & Bruno Holanda, 2019. "Updating pricing rules," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(2), pages 335-361, September.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spyros Galanis, 2021. "Dynamic consistency, valuable information and subjective beliefs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(4), pages 1467-1497, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets
    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-03252329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.