IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i3d10.1007_s10845-023-02121-4.html
   My bibliography  Save this article

A deep learning solution for real-time quality assessment and control in additive manufacturing using point cloud data

Author

Listed:
  • Javid Akhavan

    (Stevens Institute of Technology)

  • Jiaqi Lyu

    (Stevens Institute of Technology)

  • Souran Manoochehri

    (Stevens Institute of Technology)

Abstract

This work presents an in-situ quality assessment and improvement technique using point cloud and AI for data processing and smart decision making in Additive Manufacturing (AM) fabrication to improve the quality and accuracy of fabricated artifacts. The top surface point-cloud containing top surface geometry and quality information is pre-processed and passed to an improved deep Hybrid Convolutional Auto-Encoder decoder (HCAE) model used to statistically describe the artifact's quality. The HCAE’s output is comprised of 9 × 9 segments, each including four channels with the segment's probability to contain one of four labels, Under-printed, Normally-printed, Over-printed, or Empty region. This data structure plays a significant role in command generation for fabrication process optimization. The HCAE’s accuracy and repeatability were measured by a multi-label multi-output metric developed in this study. The HCAE’s results are used to perform a real-time process adjustment by manipulating the future layer's fabrication through the G-code modification. By adjusting the machine's print speed and feed-rate, the controller exploits the subsequent layer’s deposition, grid-by-grid. The algorithm is then tested with two defective process plans: severe under-extrusion and over-extrusion conditions. Both test artifacts' quality advanced significantly and converged to an acceptable state by four iterations.

Suggested Citation

  • Javid Akhavan & Jiaqi Lyu & Souran Manoochehri, 2024. "A deep learning solution for real-time quality assessment and control in additive manufacturing using point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1389-1406, March.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:3:d:10.1007_s10845-023-02121-4
    DOI: 10.1007/s10845-023-02121-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02121-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02121-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Larsen & Paul A. Hooper, 2022. "Deep semi-supervised learning of dynamics for anomaly detection in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 457-471, February.
    2. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    3. Xiang Li & Xiaodong Jia & Qibo Yang & Jay Lee, 2020. "Quality analysis in metal additive manufacturing with deep learning," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2003-2017, December.
    4. Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    2. Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
    3. Mohammad Borumand & Saideep Nannapaneni & Gurucharan Madiraddy & Michael P. Sealy & Sima Esfandiarpour Borujeni & Gisuk Hwang, 2025. "Smart process mapping of powder bed fusion additively manufactured metallic wicks using surrogate modeling," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1819-1833, March.
    4. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    5. Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.
    6. Sinan Uguz & Osman Ipek, 2022. "Prediction of the parameters affecting the performance of compact heat exchangers with an innovative design using machine learning techniques," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1393-1417, June.
    7. Nannan Xu & Xinze Cui & Xin Wang & Wei Zhang & Tianyu Zhao, 2022. "An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    8. Shugui Wang & Yunxian Cui & Yuxin Song & Chenggang Ding & Wanyu Ding & Junwei Yin, 2024. "A novel surface temperature sensor and random forest-based welding quality prediction model," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3291-3314, October.
    9. Nazanin Hosseini Arian & Alireza Pooya & Fariborz Rahimnia & Ali Sibevei, 2021. "Assessment the effect of rapid prototyping implementation on supply chain sustainability: a system dynamics approach," Operations Management Research, Springer, vol. 14(3), pages 467-493, December.
    10. T. Herzog & M. Brandt & A. Trinchi & A. Sola & A. Molotnikov, 2024. "Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1407-1437, April.
    11. Pei Wang & Tao Wang & Sheng Yang & Han Cheng & Pengde Huang & Qianle Zhang, 2024. "Production quality prediction of cross-specification products using dynamic deep transfer learning network," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2567-2592, August.
    12. Hyunmin Park & Yun Seok Kang & Seung-Kyum Choi & Hyung Wook Park, 2025. "Quality evaluation modeling of a DED-processed metallic deposition based on ResNet-50 with few training data," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2677-2693, April.
    13. Aniruddha Gaikwad & Tammy Chang & Brian Giera & Nicholas Watkins & Saptarshi Mukherjee & Andrew Pascall & David Stobbe & Prahalada Rao, 2022. "In-process monitoring and prediction of droplet quality in droplet-on-demand liquid metal jetting additive manufacturing using machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2093-2117, October.
    14. Siyamalan Manivannan, 2023. "Automatic quality inspection in additive manufacturing using semi-supervised deep learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3091-3108, October.
    15. Ahmed Mujtaba & Faisal Islam & Patrick Kaeding & Thomas Lindemann & B. Gangadhara Prusty, 2025. "Machine-learning based process monitoring for automated composites manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1095-1110, February.
    16. Jia Liu & Jiafeng Ye & Daniel Silva Izquierdo & Aleksandr Vinel & Nima Shamsaei & Shuai Shao, 2023. "A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3249-3275, December.
    17. Hao Jiang & Zhibin Zhao & Zilong Zhang & Xingwu Zhang & Chenxi Wang & Xuefeng Chen, 2025. "Qualitative and quantitative characterization of powder bed quality in laser powder-bed fusion additive manufacturing by multi-task learning," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2695-2707, April.
    18. Hong Seok Park & Dinh Son Nguyen & Thai Le-Hong & Xuan Tran, 2022. "Machine learning-based optimization of process parameters in selective laser melting for biomedical applications," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1843-1858, August.
    19. Zhe Li & Kexin Liu & Xudong Wang & Xiaofang Yuan & He Xie & Yaonan Wang, 2025. "A signal-to-image fault classification method based on multi-sensor data for robotic grinding monitoring," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 537-550, January.
    20. Jihoon Chung & Bo Shen & Zhenyu James Kong, 2024. "Anomaly detection in additive manufacturing processes using supervised classification with imbalanced sensor data based on generative adversarial network," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2387-2406, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:3:d:10.1007_s10845-023-02121-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.