IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v52y2020i11p1204-1217.html
   My bibliography  Save this article

Toward the digital twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to detect process faults

Author

Listed:
  • Aniruddha Gaikwad
  • Reza Yavari
  • Mohammad Montazeri
  • Kevin Cole
  • Linkan Bian
  • Prahalada Rao

Abstract

The goal of this work is to achieve the defect-free production of parts made using Additive Manufacturing (AM) processes. As a step towards this goal, the objective is to detect flaws in AM parts during the process by combining predictions from a physical model (simulation) with in-situ sensor signatures in a machine learning framework. We hypothesize that flaws in AM parts are detected with significantly higher statistical fidelity (F-score) when both in-situ sensor data and theoretical predictions are pooled together in a machine learning model, compared to an approach that is based exclusively on machine learning of sensor data (black-box model) or physics-based predictions (white-box model). We test the hypothesized efficacy of such a gray-box model or digital twin approach in the context of the laser powder bed fusion (LPBF) and directed energy deposition (DED) AM processes. For example, in the DED process, we first predicted the instantaneous spatiotemporal distribution of temperature in a thin-wall titanium alloy part using a computational heat transfer model based on graph theory. Subsequently, we combined the preceding physics-derived thermal trends with in-situ temperature measurements obtained from a pyrometer in a readily implemented supervised machine learning framework (support vector machine). We demonstrate that the integration of temperature predictions from an ab initio heat transfer model and in-situ sensor data is capable of detecting flaws in the DED-produced thin-wall part with F-score approaching 90%. By contrast, the F-score decreases to nearly 80% when either temperature measurements from the in-situ sensor or temperature distribution predictions from the theoretical model are used alone by themselves. This work thus demonstrates an early foray into the digital twin paradigm for real-time process monitoring in AM via seamless integration of physics-based modeling (simulation), in-situ sensing, and data analytics (machine learning).

Suggested Citation

  • Aniruddha Gaikwad & Reza Yavari & Mohammad Montazeri & Kevin Cole & Linkan Bian & Prahalada Rao, 2020. "Toward the digital twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to detect process faults," IISE Transactions, Taylor & Francis Journals, vol. 52(11), pages 1204-1217, November.
  • Handle: RePEc:taf:uiiexx:v:52:y:2020:i:11:p:1204-1217
    DOI: 10.1080/24725854.2019.1701753
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2019.1701753
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2019.1701753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
    2. Yong Ren & Qian Wang, 2022. "Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2239-2256, December.
    3. David Guirguis & Conrad Tucker & Jack Beuth, 2024. "Accelerating process development for 3D printing of new metal alloys," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Yingjie Zhang & Wentao Yan, 2023. "Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2557-2580, August.
    5. Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:52:y:2020:i:11:p:1204-1217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.