IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i4d10.1007_s10845-024-02408-0.html
   My bibliography  Save this article

Quality evaluation modeling of a DED-processed metallic deposition based on ResNet-50 with few training data

Author

Listed:
  • Hyunmin Park

    (Ulsan National Institute of Science and Technology)

  • Yun Seok Kang

    (Ulsan National Institute of Science and Technology)

  • Seung-Kyum Choi

    (Georgia Institute of Technology)

  • Hyung Wook Park

    (Ulsan National Institute of Science and Technology)

Abstract

The additive-manufacturing (AM) field necessitates a robust process-monitoring system for quality assurance and control. To meet this industrial requirement, quality-evaluation models have emerged as powerful tools for providing quality feedback. Recently, convolutional-neural-network- (CNN)-based classification models have gained popularity in quality evaluation using image data. However, such models require sufficient image data for training, a requirement that is challenging to fulfill in the context of metallic AM due to the complexity of decomposition and analysis. This challenge is particularly pronounced in start-up or medium-sized metallic-AM enterprises. Moreover, many countries around the world have faced a decline in population and a shortage of labor in the engineering field. This growing shortage of workers to collect datasets exacerbates this challenge. In this study, experiments of directed-energy-deposition (DED) processes for single-line and single-track metallic deposition using AISI 316 L stainless-steel powders were conducted with two experimenters. After the process, a minimal amount of cross-sectional surface image data of the metallic deposition was binary-processed and analyzed across three quality states: normal state, surface burrs, and internal defects. To compensate for the lack of training data, multiple strategies are proposed, including image preprocessing and ResNet transfer learning. The selection of an optimization solver and layer depth for maximizing classification performance was discussed. The potential performance of ResNet dealing with binary images and performance standards with few training data was also identified by comparing with other higher-level architectures (Inception and Xcepition).

Suggested Citation

  • Hyunmin Park & Yun Seok Kang & Seung-Kyum Choi & Hyung Wook Park, 2025. "Quality evaluation modeling of a DED-processed metallic deposition based on ResNet-50 with few training data," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2677-2693, April.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02408-0
    DOI: 10.1007/s10845-024-02408-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02408-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02408-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siyamalan Manivannan, 2023. "Automatic quality inspection in additive manufacturing using semi-supervised deep learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3091-3108, October.
    2. Sung-Mook Oh & Jin Park & Jinsun Yang & Young-Gyun Oh & Kyung-Woo Yi, 2023. "Smart classification method to detect irregular nozzle spray patterns inside carbon black reactor using ensemble transfer learning," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2729-2745, August.
    3. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    4. Xiang Li & Xiaodong Jia & Qibo Yang & Jay Lee, 2020. "Quality analysis in metal additive manufacturing with deep learning," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2003-2017, December.
    5. Nhat-To Huynh, 2024. "A multi-subpopulation genetic algorithm-based CNN approach for ceramic tile defects classification," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1781-1792, April.
    6. Tobias Schlosser & Michael Friedrich & Frederik Beuth & Danny Kowerko, 2022. "Improving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1099-1123, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    2. Nannan Xu & Xinze Cui & Xin Wang & Wei Zhang & Tianyu Zhao, 2022. "An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    3. Nazanin Hosseini Arian & Alireza Pooya & Fariborz Rahimnia & Ali Sibevei, 2021. "Assessment the effect of rapid prototyping implementation on supply chain sustainability: a system dynamics approach," Operations Management Research, Springer, vol. 14(3), pages 467-493, December.
    4. T. Herzog & M. Brandt & A. Trinchi & A. Sola & A. Molotnikov, 2024. "Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1407-1437, April.
    5. Ibrahim Yousif & Liam Burns & Fadi El Kalach & Ramy Harik, 2025. "Leveraging computer vision towards high-efficiency autonomous industrial facilities," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 2983-3008, June.
    6. Ping Chen & Mingfang Chen & Sen Wang & Yanjin Song & Yu Cui & Zhongping Chen & Yongxia Zhang & Songlin Chen & Xiang Mo, 2024. "Real-time defect detection of TFT-LCD displays using a lightweight network architecture," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1337-1352, March.
    7. Javid Akhavan & Jiaqi Lyu & Souran Manoochehri, 2024. "A deep learning solution for real-time quality assessment and control in additive manufacturing using point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1389-1406, March.
    8. Shuanlong Niu & Yaru Peng & Bin Li & Yuanhong Qiu & Tongzhi Niu & Weifeng Li, 2024. "A novel deep learning motivated data augmentation system based on defect segmentation requirements," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 687-701, February.
    9. Yuwei Mao & Hui Lin & Christina Xuan Yu & Roger Frye & Darren Beckett & Kevin Anderson & Lars Jacquemetton & Fred Carter & Zhangyuan Gao & Wei-keng Liao & Alok N. Choudhary & Kornel Ehmann & Ankit Agr, 2023. "A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 315-329, January.
    10. Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
    11. Wang, Linhui & Cao, Zhanglu & Dong, Zhiqing, 2023. "Are artificial intelligence dividends evenly distributed between profits and wages? Evidence from the private enterprise survey data in China," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 342-356.
    12. Mohammad Borumand & Saideep Nannapaneni & Gurucharan Madiraddy & Michael P. Sealy & Sima Esfandiarpour Borujeni & Gisuk Hwang, 2025. "Smart process mapping of powder bed fusion additively manufactured metallic wicks using surrogate modeling," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1819-1833, March.
    13. Yanan Pan & Renke Kang & Zhigang Dong & Wenhao Du & Sen Yin & Yan Bao, 2022. "On-line prediction of ultrasonic elliptical vibration cutting surface roughness of tungsten heavy alloy based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 675-685, March.
    14. Minyoung Lee & Joohyoung Jeon & Hongchul Lee, 2022. "Explainable AI for domain experts: a post Hoc analysis of deep learning for defect classification of TFT–LCD panels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1747-1759, August.
    15. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    16. Yunhan Kim & Taekyum Kim & Byeng D. Youn & Sung-Hoon Ahn, 2022. "Machining quality monitoring (MQM) in laser-assisted micro-milling of glass using cutting force signals: an image-based deep transfer learning," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1813-1828, August.
    17. Jun-Qiang Wang & Yun-Lei Song & Peng-Hao Cui & Yang Li, 2023. "A data-driven method for performance analysis and improvement in production systems with quality inspection," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 455-469, February.
    18. Jinping Liu & Jie Wang & Xianfeng Liu & Tianyu Ma & Zhaohui Tang, 2022. "MWRSPCA: online fault monitoring based on moving window recursive sparse principal component analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1255-1271, June.
    19. Omid Davtalab & Ali Kazemian & Xiao Yuan & Behrokh Khoshnevis, 2022. "Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 771-784, March.
    20. Hasan Tercan & Philipp Deibert & Tobias Meisen, 2022. "Continual learning of neural networks for quality prediction in production using memory aware synapses and weight transfer," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 283-292, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02408-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.