IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i5d10.1007_s12351-022-00733-x.html
   My bibliography  Save this article

Robust maintenance planning and scheduling for multi-factory production networks considering disruption cost: a bi-objective optimization model and a metaheuristic solution method

Author

Listed:
  • Seyed Ahmad Razavi Al-e-hashem

    (Iran University of Science and Technology)

  • Ali Papi

    (Iran University of Science and Technology)

  • Mir Saman Pishvaee

    (Iran University of Science and Technology)

  • Mohammadreza Rasouli

    (Iran University of Science and Technology)

Abstract

The intense competition in the global business market has forced organizations to move from centralized to decentralized structures and develop multi-factory production (MFP) networks. In MFP networks, a well-designed maintenance system is critical for increasing the life cycle of the machine and reducing the probability of disruption. In this regard, this study proposes a bi-objective optimization model for maintenance planning and scheduling in an MFP network. The proposed model determines backup machines for some factories, maintenance performing agents, and machine maintenance periods based on the failure function, in the planning and scheduling phases, respectively. Besides, we propose two strategies for MFP network resilience under disruption. The objective functions are minimizing the maintenance costs and maximizing reliability. To obtain the Pareto front and trade-off the objectives, we first apply a lexicographic approach to find the best payoff matrix, and then the augmented epsilon constraint method is utilized. Because of the inherent uncertainty of the parameters, an effective robust programming approach is employed to effectively control the uncertainty of the input parameters and the conservatism level of the output decisions. To solve the proposed model, the CPLEX Solver is applied for small and medium instances, while for large-scale samples, a heuristic method based on the genetic algorithm is proposed. Finally, to demonstrate the applicability of the model, it is applied to a case study of CNG stations in Iran.

Suggested Citation

  • Seyed Ahmad Razavi Al-e-hashem & Ali Papi & Mir Saman Pishvaee & Mohammadreza Rasouli, 2022. "Robust maintenance planning and scheduling for multi-factory production networks considering disruption cost: a bi-objective optimization model and a metaheuristic solution method," Operational Research, Springer, vol. 22(5), pages 4999-5034, November.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00733-x
    DOI: 10.1007/s12351-022-00733-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-022-00733-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-022-00733-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simeu-Abazi, Zineb & Ahmad, Alali Alhouaij, 2011. "Optimisation of distributed maintenance: Modelling and application to the multi-factory production," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1564-1575.
    2. Fred M. Westfield, 1955. "Marginal Analysis, Multi-Plant Firms, and Business Practice: An Example," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(2), pages 253-268.
    3. Abdelhamid Boudjelida, 2019. "On the robustness of joint production and maintenance scheduling in presence of uncertainties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1515-1530, April.
    4. Iwona Paprocka, 2019. "The model of maintenance planning and production scheduling for maximising robustness," International Journal of Production Research, Taylor & Francis Journals, vol. 57(14), pages 4480-4501, July.
    5. J. Behnamian & S. M. T. Fatemi Ghomi, 2016. "A survey of multi-factory scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(1), pages 231-249, February.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Chung, S.H. & Lau, H.C.W. & Choy, K.L. & Ho, G.T.S. & Tse, Y.K., 2010. "Application of genetic approach for advanced planning in multi-factory environment," International Journal of Production Economics, Elsevier, vol. 127(2), pages 300-308, October.
    8. Al-Najjar, Basim & Alsyouf, Imad, 2004. "Enhancing a company's profitability and competitiveness using integrated vibration-based maintenance: A case study," European Journal of Operational Research, Elsevier, vol. 157(3), pages 643-657, September.
    9. Mohammad Doostparast & Farhad Kolahan & Mahdi Doostparast, 2015. "Optimisation of PM scheduling for multi-component systems – a simulated annealing approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1199-1207, May.
    10. Timpe, Christian H. & Kallrath, Josef, 2000. "Optimal planning in large multi-site production networks," European Journal of Operational Research, Elsevier, vol. 126(2), pages 422-435, October.
    11. Imen Chaouch & Olfa Belkahla Driss & Khaled Ghedira, 2020. "A review of job shop scheduling problems in multi-factories," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 38(2), pages 147-165.
    12. Al-Najjar, Basim, 2007. "The lack of maintenance and not maintenance which costs: A model to describe and quantify the impact of vibration-based maintenance on company's business," International Journal of Production Economics, Elsevier, vol. 107(1), pages 260-273, May.
    13. Jacob Lohmer & Rainer Lasch, 2021. "Production planning and scheduling in multi-factory production networks: a systematic literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 59(7), pages 2028-2054, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafar-Zanjani, Hamed & Zandieh, Mostafa & Sharifi, Mani, 2022. "Robust and resilient joint periodic maintenance planning and scheduling in a multi-factory network under uncertainty: A case study," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. J. Behnamian & S. M. T. Fatemi Ghomi, 2016. "A survey of multi-factory scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(1), pages 231-249, February.
    3. Kans, Mirka & Ingwald, Anders, 2008. "Common database for cost-effective improvement of maintenance performance," International Journal of Production Economics, Elsevier, vol. 113(2), pages 734-747, June.
    4. Sun, X.T. & Chung, S.H. & Chan, Felix T.S., 2015. "Integrated scheduling of a multi-product multi-factory manufacturing system with maritime transport limits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 110-127.
    5. Ali Gharaei & Fariborz Jolai, 2021. "A Pareto approach for the multi-factory supply chain scheduling and distribution problem," Operational Research, Springer, vol. 21(4), pages 2333-2364, December.
    6. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    7. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    8. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    9. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    10. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    11. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    12. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    13. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    14. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    15. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    16. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    17. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    18. Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.
    20. František Freiberg & David Michálek & Marek Nemec & Miroslav Žilka & George Cristian Gruia, 2011. "Survey Regarding The Level Of Product Lifecycle Management In Manufacturing Companies," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 116-120, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00733-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.