IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v63y2012i3p1361-1374.html
   My bibliography  Save this article

Prediction of severe tropical cyclones over the Bay of Bengal during 2007–2010 using high-resolution mesoscale model

Author

Listed:
  • P. Raju
  • Jayaraman Potty
  • U. Mohanty

Abstract

In this paper, the performance of a high-resolution mesoscale model for the prediction of severe tropical cyclones over the Bay of Bengal during 2007–2010 (Sidr, Nargis, Aila, and Laila) is discussed. The advanced Weather Research Forecast (WRF) modeling system (ARW core) is used with a combination of Yonsei University PBL schemes, Kain-Fritsch cumulus parameterization, and Ferrier cloud microphysics schemes for the simulations. The initial and boundary conditions for the simulations are derived from global operational analysis and forecast products of the National Center for Environmental Prediction-Global Forecast System (NCEP-GFS) available at 1°lon/lat resolution. The simulation results of the extreme weather parameters such as heavy rainfall, strong wind and track of those four severe cyclones, are critically evaluated and discussed by comparing with the Joint Typhoon Warning Center (JTWC) estimated values. The simulations of the cyclones reveal that the cyclone track, intensity, and time of landfall are reasonably well simulated by the model. The mean track error at the time of landfall of the cyclone is 98 km, in which the minimum error was found to be for the cyclone Nargis (22 km) and maximum error for the cyclone Laila (304 km). The landfall time of all the cyclones is also fairly simulated by the model. The distribution and intensity of rainfall are well simulated by the model as well and were comparable with the TRMM estimates. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • P. Raju & Jayaraman Potty & U. Mohanty, 2012. "Prediction of severe tropical cyclones over the Bay of Bengal during 2007–2010 using high-resolution mesoscale model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1361-1374, September.
  • Handle: RePEc:spr:nathaz:v:63:y:2012:i:3:p:1361-1374
    DOI: 10.1007/s11069-011-9918-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9918-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9918-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. D. Rao & Dasari Prasad, 2007. "Sensitivity of tropical cyclone intensification to boundary layer and convective processes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 429-445, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Sateesh & C. V. Srinivas & P. V. S. Raju, 2017. "Numerical simulation of tropical cyclone thane: role of boundary layer and surface drag parameterization schemes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1255-1271, December.
    2. M. Islam & Mehedi Hasan, 2016. "Climate-induced human displacement: a case study of Cyclone Aila in the south-west coastal region of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1051-1071, March.
    3. M. Rezaul Islam & Mehedi Hasan, 2016. "Climate-induced human displacement: a case study of Cyclone Aila in the south-west coastal region of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1051-1071, March.
    4. Deepak Subramani & R. Chandrasekar & K. Ramanujam & C. Balaji, 2014. "A new ensemble-based data assimilation algorithm to improve track prediction of tropical cyclones," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 659-682, March.
    5. Tanvir Islam & Prashant Srivastava & Miguel Rico-Ramirez & Qiang Dai & Manika Gupta & Sudhir Singh, 2015. "Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1473-1495, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Bala Subrahamanyam & Radhika Ramachandran & K. Nalini & Freddy P. Paul & S. Roshny, 2019. "Performance evaluation of COSMO numerical weather prediction model in prediction of OCKHI: one of the rarest very severe cyclonic storms over the Arabian Sea—a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 431-459, March.
    2. Shumin Chen & Yu-Kun Qian & Shiqiu Peng, 2015. "Effects of various combinations of boundary layer schemes and microphysics schemes on the track forecasts of tropical cyclones over the South China Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 61-74, August.
    3. Stanley Changnon, 2009. "Characteristics of severe Atlantic hurricanes in the United States: 1949–2006," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 329-337, March.
    4. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    5. Yanos Zylberberg, 2010. "Natural natural disasters and economic disruption," PSE Working Papers halshs-00564946, HAL.
    6. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    7. Nicola Ranger & Falk Nieh�rster, 2011. "Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments," GRI Working Papers 51, Grantham Research Institute on Climate Change and the Environment.
    8. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    9. Geoffrey Heal & Howard Kunreuther, 2010. "Environment and Energy: Catastrophic Liabilities from Nuclear Power Plants," NBER Chapters, in: Measuring and Managing Federal Financial Risk, pages 235-257, National Bureau of Economic Research, Inc.
    10. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    11. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.
    12. Camila I. Donatti & Celia A. Harvey & David Hole & Steven N. Panfil & Hanna Schurman, 2020. "Indicators to measure the climate change adaptation outcomes of ecosystem-based adaptation," Climatic Change, Springer, vol. 158(3), pages 413-433, February.
    13. Don Driscoll & Adam Felton & Philip Gibbons & Annika Felton & Nicola Munro & David Lindenmayer, 2012. "Priorities in policy and management when existing biodiversity stressors interact with climate-change," Climatic Change, Springer, vol. 111(3), pages 533-557, April.
    14. Dasgupta, Susmita & Laplante, Benoit & Murray, Siobhan & Wheeler, David, 2009. "Sea-level rise and storm surges : a comparative analysis of impacts in developing countries," Policy Research Working Paper Series 4901, The World Bank.
    15. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    16. Raphaël Rousseau-Rizzi & Kerry Emanuel, 2022. "Natural and anthropogenic contributions to the hurricane drought of the 1970s–1980s," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    18. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    19. Austin Becker & Michele Acciaro & Regina Asariotis & Edgard Cabrera & Laurent Cretegny & Philippe Crist & Miguel Esteban & Andrew Mather & Steve Messner & Susumu Naruse & Adolf Ng & Stefan Rahmstorf &, 2013. "A note on climate change adaptation for seaports: a challenge for global ports, a challenge for global society," Climatic Change, Springer, vol. 120(4), pages 683-695, October.
    20. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:63:y:2012:i:3:p:1361-1374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.