IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v119y2023i3d10.1007_s11069-023-06170-z.html
   My bibliography  Save this article

Analyzing vulnerability of communities to flood using composite vulnerability index: evidence from Bhagirathi Sub-basin, India

Author

Listed:
  • Sufia Rehman

    (Jamia Millia Islamia)

  • Md. Hibjur Rahaman

    (Jamia Millia Islamia)

  • Md. Masroor

    (Jamia Millia Islamia)

  • Roshani

    (Jamia Millia Islamia)

  • Haroon Sajjad

    (Jamia Millia Islamia)

  • Raihan Ahmed

    (Nowgong College)

  • Ali P. Yunus

    (Chengdu University of Technology)

  • Mehebub Sahana

    (University of Manchester)

Abstract

Flood is always a source of social lamentation, huge infrastructural losses and disruption to economic activities in Bhagirathi Sub-basin in India. Climate variability and increasing flood incidents have created a dilemma for social, economic and environmental conditions of the affected communities. These implications necessitate assessing overall flood vulnerability to minimize their short and long-term impacts. This study presents a comprehensive analysis of composite vulnerability among the flood affected communities in Bhagirathi Sub-basin. Data for analyzing composite flood vulnerability were derived from an in-depth survey of 432 households selected through stratified random sampling method in the Sub-basin. Domains of vulnerability such as quality of life, social & economic status, health impacts, ecological implications, losses and adaptation were examined. A total of 95 indicators of these domains were considered to prepare composite vulnerability index of the selected villages. Relationship between vulnerability and households’ characteristics was ascertained using cross tabulation and multinomial logistic regression. Analysis of composite vulnerability index (CVI) revealed very high vulnerability in Nutanhat, Bakkhali, Jhara, Gopalpur, Jayarampur, Titiha, Uchildaha and Mohanpur villages. High vulnerability was observed in Banagram, Mayapur, Amravati, Gobindapur, Raichak Boltala, Talim Nagar Minakhan and Majhirmana villages while Kalna Municipality was found under moderate vulnerability. High losses, ecological & health implications and low socioeconomic conditions of the households aggravated very high to moderate vulnerability in these villages. Gender, income and land possession were found strongly associated with high vulnerability while flood insurance, farming purposes and changes in rainfall pattern were identified inducing moderate vulnerability. CVI analysis assisted in identifying the priority villages for effective policy implications. The study calls for policy implications for lessening the impact of flood in the Sub-basin.

Suggested Citation

  • Sufia Rehman & Md. Hibjur Rahaman & Md. Masroor & Roshani & Haroon Sajjad & Raihan Ahmed & Ali P. Yunus & Mehebub Sahana, 2023. "Analyzing vulnerability of communities to flood using composite vulnerability index: evidence from Bhagirathi Sub-basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 1341-1377, December.
  • Handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-023-06170-z
    DOI: 10.1007/s11069-023-06170-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06170-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06170-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roy Brouwer & Sonia Akter & Luke Brander & Enamul Haque, 2007. "Socioeconomic Vulnerability and Adaptation to Environmental Risk: A Case Study of Climate Change and Flooding in Bangladesh," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 313-326, April.
    2. P. Raju & Jayaraman Potty & U. Mohanty, 2012. "Prediction of severe tropical cyclones over the Bay of Bengal during 2007–2010 using high-resolution mesoscale model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1361-1374, September.
    3. Juri Kim & Tae-Hyoung Tommy Gim, 2020. "Assessment of social vulnerability to floods on Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 101-114, May.
    4. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    5. James D. Ford & Tristan Pearce & Graham McDowell & Lea Berrang-Ford & Jesse S. Sayles & Ella Belfer, 2018. "Vulnerability and its discontents: the past, present, and future of climate change vulnerability research," Climatic Change, Springer, vol. 151(2), pages 189-203, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mastronardi, Luigi & Cavallo, Aurora & Romagnoli, Luca, 2022. "A novel composite environmental fragility index to analyse Italian ecoregions’ vulnerability," Land Use Policy, Elsevier, vol. 122(C).
    2. Uttama Barua & Shahrin Mannan & Ishrat Islam & Mohammad Shakil Akther & Md. Aminul Islam & Tamanna Akter & Raquib Ahsan & Mehedy Ahmed Ansary, 2020. "People’s awareness, knowledge and perception influencing earthquake vulnerability of a community: A study on Ward no. 14, Mymensingh Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1121-1181, August.
    3. Alias Nurul Ashikin & Mohd Idris Nor Diana & Chamhuri Siwar & Md. Mahmudul Alam & Muhamad Yasar, 2021. "Community Preparation and Vulnerability Indices for Floods in Pahang State of Malaysia," Land, MDPI, vol. 10(2), pages 1-23, February.
    4. Sindhuja Kasthala & D. Parthasarathy & K. Narayanan & Arun B. Inamdar, 2024. "Classification and Evaluation of Current Climate Vulnerability Assessment Methods," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 171(2), pages 605-639, January.
    5. Daystar Babanawo & Precious Agbeko D. Mattah & Samuel K. M. Agblorti & Emmanuel K. Brempong & Memuna Mawusi Mattah & Denis Worlanyo Aheto, 2022. "Local Indicator-Based Flood Vulnerability Indices and Predictors of Relocation in the Ketu South Municipal Area of Ghana," Sustainability, MDPI, vol. 14(9), pages 1-26, May.
    6. J. Connor Darlington & Niko Yiannakoulias & Amin Elshorbagy, 2022. "Changes in social vulnerability to flooding: a quasi-experimental analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2487-2509, April.
    7. Margherita Righini & Ignacio Gatti & Andrea Taramelli & Marcello Arosio & Emiliana Valentini & Serena Sapio & Emma Schiavon, 2024. "Integrated Flood Impact and Vulnerability Assessment Using a Multi-Sensor Earth Observation Mission with the Perspective of an Operational Service in Lombardy, Italy," Land, MDPI, vol. 13(2), pages 1-26, January.
    8. Md Omar Faruk & Keshav Lall Maharjan, 2022. "Impact of Farmers’ Participation in Community-Based Organizations on Adoption of Flood Adaptation Strategies: A Case Study in a Char-Land Area of Sirajganj District Bangladesh," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    9. Matthias Garschagen & Deepal Doshi & Jonathan Reith & Michael Hagenlocher, 2021. "Global patterns of disaster and climate risk—an analysis of the consistency of leading index-based assessments and their results," Climatic Change, Springer, vol. 169(1), pages 1-19, November.
    10. Abdul Hasib Mollah & Hasibul Hasan Shovon & Apurba Roy, 2025. "Assessing socioeconomic vulnerability of cyclone remal-affected coastal communities in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(6), pages 6571-6596, April.
    11. Gabrielle Linscott & Andrea Rishworth & Brian King & Mikael P. Hiestand, 2022. "Uneven experiences of urban flooding: examining the 2010 Nashville flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 629-653, January.
    12. Terese E. Venus & Stephanie Bilgram & Johannes Sauer & Arun Khatri-Chettri, 2022. "Livelihood vulnerability and climate change: a comparative analysis of smallholders in the Indo-Gangetic plains," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1981-2009, February.
    13. Shepherd, Philippa M. & Dissart, Jean-Christophe, 2022. "Reframing vulnerability and resilience to climate change through the lens of capability generation," Ecological Economics, Elsevier, vol. 201(C).
    14. Umer Khayyam, 2020. "Floods: impacts on livelihood, economic status and poverty in the north-west region of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1033-1056, July.
    15. Nimra Iqbal & Marvin Ravan & Ali Jamshed & Joern Birkmann & Giorgos Somarakis & Zina Mitraka & Nektarios Chrysoulakis, 2022. "Linkages between Typologies of Existing Urban Development Patterns and Human Vulnerability to Heat Stress in Lahore," Sustainability, MDPI, vol. 14(17), pages 1-26, August.
    16. Md. Salimul Alam Shahin & Paula Villagra & Bruno Mazzorana & Md. Juwel Rana & Imran Khan & Hamad Ahmed Altuwaijri & Abdulla Al Kafy, 2025. "Assessing Tsunami vulnerability indicators to enhance coastal resilience in Southern Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 5471-5525, March.
    17. Elia A Machado & Samuel Ratick, 2018. "Implications of indicator aggregation methods for global change vulnerability reduction efforts," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1109-1141, October.
    18. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    19. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    20. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-023-06170-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.