IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i8d10.1007_s11069-024-06510-7.html
   My bibliography  Save this article

Future changes in intense tropical cyclone hazards in the Pearl River Delta region: an air-wave-ocean coupled model study

Author

Listed:
  • Zhenning Li

    (The Hong Kong University of Science and Technology)

  • Jimmy C. H. Fung

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology)

  • Mau Fung Wong

    (The Hong Kong University of Science and Technology)

  • Shangfei Lin

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology)

  • Fenying Cai

    (Potsdam Institute for Climate Impact Research)

  • Wenfeng Lai

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology)

  • Alexis K. H. Lau

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology)

Abstract

The Pearl River Delta (PRD) region is highly vulnerable to tropical cyclone (TC)-caused coastal hazards due to its long and meandering shoreline and well-developed economy. With global warming expected to continue or worsen in the rest of the twenty-first century, this study examines the TC impact on the PRD coastal regions by reproducing three intense landfalling TCs, namely Vicente (2012), Hato (2017), Mangkhut (2018), using a sophisticated air-wave-ocean coupled model of high spatial resolution (1-km atmosphere and 500-m wave and ocean). The simulations are conducted using present-day reanalysis data and the same TCs occurring in a pseudo-global warming scenario projected for the 2090s. Results indicate that the coupled model accurately reproduces the air-wave-ocean status during the TC episodes. The 2090s thermodynamic status effectively increases the intensity of intense TCs, leading to more severe coastal hazards including gale, rainstorm, and storm surges and waves. On average, the maximum surface wind speed within 50–200 km to the right of the TC center can increase by 4.3 m/s (+22%). The 99th and the 99.9th percentile of accumulated rainfall will increase from 405 to 475 mm (+17.3%), and from 619 to 735 mm (+18.6%), respectively. The maximum significant wave height at the ocean is lifted by an average of 57 cm (+13.8%), and the coastline typically faces a 40–80 cm increase. The maximum storm surges are lifted by 30–80 cm over the open sea but aggravate much higher along the coastline, especially for narrowing estuaries. For Typhoon Vicente (2012), there is more than a 200 cm wave height increase observed both at open sea and along the coastline. In the 2090s context, a combination of mean sea level rise, storm surge, and wave height can reach more than 300 cm increase in total water level at certain hot-spot coastlines, without considering the superposition of spring tides.

Suggested Citation

  • Zhenning Li & Jimmy C. H. Fung & Mau Fung Wong & Shangfei Lin & Fenying Cai & Wenfeng Lai & Alexis K. H. Lau, 2024. "Future changes in intense tropical cyclone hazards in the Pearl River Delta region: an air-wave-ocean coupled model study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7139-7154, June.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06510-7
    DOI: 10.1007/s11069-024-06510-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06510-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06510-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Karthik Balaguru & Gregory R. Foltz & L. Ruby Leung & Kerry A. Emanuel, 2016. "Global warming-induced upper-ocean freshening and the intensification of super typhoons," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    3. Christo Rautenbach & Tania Daniels & Marc Vos & Michael A. Barnes, 2020. "A coupled wave, tide and storm surge operational forecasting system for South Africa: validation and physical description," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1407-1439, August.
    4. Ping Huang & I. -I Lin & Chia Chou & Rong-Hui Huang, 2015. "Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    5. Ning Lin & Reza Marsooli & Brian A. Colle, 2019. "Storm surge return levels induced by mid-to-late-twenty-first-century extratropical cyclones in the Northeastern United States," Climatic Change, Springer, vol. 154(1), pages 143-158, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong Gao & Lei Zhou & I.-I. Lin & Chunzai Wang & Shoude Guan & Fei-Fei Jin & Raghu Murtugudde, 2025. "Crucial role of subsurface ocean variability in tropical cyclone genesis," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Jing Xu & Ping Zhao & Johnny C. L. Chan & Mingyuan Shi & Chi Yang & Siyu Zhao & Ying Xu & Junming Chen & Ling Du & Jie Wu & Jiaxin Ye & Rui Xing & Huimei Wang & Lu Liu, 2024. "Increasing tropical cyclone intensity in the western North Pacific partly driven by warming Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Xiaotong Sui & Mingzhao Hu & Haoyun Wang & Lingdi Zhao, 2023. "Improved elasticity estimation model for typhoon storm surge losses in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2363-2381, March.
    4. Kuhla, Kilian & Willner, Sven N & Otto, Christian & Levermann, Anders, 2023. "Resilience of international trade to typhoon-related supply disruptions," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    5. Stanley Changnon, 2009. "Characteristics of severe Atlantic hurricanes in the United States: 1949–2006," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 329-337, March.
    6. Lianjie Qin & Laiyin Zhu & Baoyin Liu & Zixuan Li & Yugang Tian & Gordon Mitchell & Shifei Shen & Wei Xu & Jianguo Chen, 2024. "Global expansion of tropical cyclone precipitation footprint," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    8. Yanos Zylberberg, 2010. "Natural natural disasters and economic disruption," PSE Working Papers halshs-00564946, HAL.
    9. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    10. Nicola Ranger & Falk Nieh�rster, 2011. "Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments," GRI Working Papers 51, Grantham Research Institute on Climate Change and the Environment.
    11. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    12. Geoffrey Heal & Howard Kunreuther, 2010. "Environment and Energy: Catastrophic Liabilities from Nuclear Power Plants," NBER Chapters, in: Measuring and Managing Federal Financial Risk, pages 235-257, National Bureau of Economic Research, Inc.
    13. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    14. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.
    15. Jung-A Yang & Sooyoul Kim & Sangyoung Son & Nobuhito Mori & Hajime Mase, 2020. "Assessment of uncertainties in projecting future changes to extreme storm surge height depending on future SST and greenhouse gas concentration scenarios," Climatic Change, Springer, vol. 162(2), pages 425-442, September.
    16. Camila I. Donatti & Celia A. Harvey & David Hole & Steven N. Panfil & Hanna Schurman, 2020. "Indicators to measure the climate change adaptation outcomes of ecosystem-based adaptation," Climatic Change, Springer, vol. 158(3), pages 413-433, February.
    17. Don Driscoll & Adam Felton & Philip Gibbons & Annika Felton & Nicola Munro & David Lindenmayer, 2012. "Priorities in policy and management when existing biodiversity stressors interact with climate-change," Climatic Change, Springer, vol. 111(3), pages 533-557, April.
    18. Dasgupta, Susmita & Laplante, Benoit & Murray, Siobhan & Wheeler, David, 2009. "Sea-level rise and storm surges : a comparative analysis of impacts in developing countries," Policy Research Working Paper Series 4901, The World Bank.
    19. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    20. Raphaël Rousseau-Rizzi & Kerry Emanuel, 2022. "Natural and anthropogenic contributions to the hurricane drought of the 1970s–1980s," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06510-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.