IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v119y2023i1d10.1007_s11069-023-06137-0.html
   My bibliography  Save this article

Developing hybrid XGBoost model integrated with entropy weight and Bayesian optimization for predicting tunnel squeezing intensity

Author

Listed:
  • Xiaojie Geng

    (Kunming University of Science and Technology
    Ministry of Natural Resources of the People’s Republic of China)

  • Shunchuan Wu

    (Kunming University of Science and Technology
    Ministry of Natural Resources of the People’s Republic of China
    University of Science and Technology Beijing)

  • Yanjie Zhang

    (Yunnan Dianzhong Water Diversion Engineering Co., Ltd.)

  • Junlong Sun

    (Kunming University of Science and Technology)

  • Haiyong Cheng

    (Kunming University of Science and Technology
    Ministry of Natural Resources of the People’s Republic of China)

  • Zhongxin Zhang

    (Kunming University of Science and Technology)

  • Shijiang Pu

    (Kunming University of Science and Technology)

Abstract

Tunnel squeezing, a significant deformation issue intimately tied to creep, poses a substantial threat to the safety and efficiency of tunnel construction. In this study, we employ a combination of the Bayesian Optimization (BO) algorithm and the Entropy Weight Method (EWM) to enhance the Extreme Gradient Boosting (XGBoost) model. This optimized model aims to predict tunnel squeezing intensity accurately, utilizing a dataset derived from 139 tunnel case histories. To extract the information encapsulated in the prediction indices, the EWM is initially used to pre-process the sample data, mitigating the impact of large differences in the input parameters’ values across various dimensions. Concurrently, the BO algorithm is applied to optimize the crucial hyperparameters of the XGBoost model, thereby effectively enhancing its performance. As part of this study, the Strength–Stress Ratio (SSR), Rock Mass Quality Index in the BQ system ([BQ]), Tunnel Diameter (D), and Support Stiffness (K) are selected as inputs for the tunnel squeezing estimation model. Within the study’s context, the prediction accuracy (Acc) and kappa coefficient (k) of the EWM-BO-XGBoost, XGBoost, BO-XGBoost, Evidence Theory (ET), Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT) models are computed and compared. The results demonstrate that the Acc (91.7%) and k (0.89) of the EWM-BO-XGBoost model are the highest, attesting to its reliability and superiority over other alternatives. Furthermore, the analysis of the prediction indices’ feature importance reveals that the SSR contributes the most to the squeezing intensity, followed by the D and [BQ], while the K has the least effect on the squeezing intensity. This study can serve as a reference for predicting tunnel squeezing deformation and provide a research foundation for intelligent tunneling operations.

Suggested Citation

  • Xiaojie Geng & Shunchuan Wu & Yanjie Zhang & Junlong Sun & Haiyong Cheng & Zhongxin Zhang & Shijiang Pu, 2023. "Developing hybrid XGBoost model integrated with entropy weight and Bayesian optimization for predicting tunnel squeezing intensity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 751-771, October.
  • Handle: RePEc:spr:nathaz:v:119:y:2023:i:1:d:10.1007_s11069-023-06137-0
    DOI: 10.1007/s11069-023-06137-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06137-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06137-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
    2. Reza Mikaeil & Sina Shaffiee Haghshenas & Zoheir Sedaghati, 2019. "Geotechnical risk evaluation of tunneling projects using optimization techniques (case study: the second part of Emamzade Hashem tunnel)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1099-1113, July.
    3. Wei Xie & Wen Nie & Pooya Saffari & Luis F. Robledo & Pierre-Yves Descote & Wenbin Jian, 2021. "Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 931-948, October.
    4. Zoubin Ghahramani, 2015. "Probabilistic machine learning and artificial intelligence," Nature, Nature, vol. 521(7553), pages 452-459, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "State Space Approach to Adaptive Artificial Intelligence Modeling: Application to Financial Portfolio with Fuzzy System," CARF F-Series CARF-F-422, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Wilson, Christopher & van der Velden, Maja, 2022. "Sustainable AI: An integrated model to guide public sector decision-making," Technology in Society, Elsevier, vol. 68(C).
    3. Yi, Jing & Canning, Patrick N. & Ge, Houtian & Rehkamp, Sarah & Gomez, Miguel I., 2023. "A national database of highly perishable fresh produce production with temporal and spatial resolution," 2023 Annual Meeting, July 23-25, Washington D.C. 335590, Agricultural and Applied Economics Association.
    4. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Behrouz Pirouz & Sina Shaffiee Haghshenas & Behzad Pirouz & Sami Shaffiee Haghshenas & Patrizia Piro, 2020. "Development of an Assessment Method for Investigating the Impact of Climate and Urban Parameters in Confirmed Cases of COVID-19: A New Challenge in Sustainable Development," IJERPH, MDPI, vol. 17(8), pages 1-17, April.
    6. Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).
    7. Xuequn Wang & Xiaolin Lin & Bin Shao, 2023. "Artificial intelligence changes the way we work: A close look at innovating with chatbots," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(3), pages 339-353, March.
    8. Behrouz Pirouz & Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas & Patrizia Piro, 2020. "Investigating a Serious Challenge in the Sustainable Development Process: Analysis of Confirmed cases of COVID-19 (New Type of Coronavirus) Through a Binary Classification Using Artificial Intelligenc," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    9. Giuseppe Guido & Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas & Alessandro Vitale & Vincenzo Gallelli & Vittorio Astarita, 2020. "Development of a Binary Classification Model to Assess Safety in Transportation Systems Using GMDH-Type Neural Network Algorithm," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    10. Himanshu Sharma & Anu G. Aggarwal, 2022. "Segmenting Reviewers Based on Reviewer and Review Characteristics," International Journal of Business Analytics (IJBAN), IGI Global, vol. 9(1), pages 1-20, January.
    11. Joaquim AP Braga & António R Andrade, 2019. "Optimizing maintenance decisions in railway wheelsets: A Markov decision process approach," Journal of Risk and Reliability, , vol. 233(2), pages 285-300, April.
    12. Manis, K.T. & Madhavaram, Sreedhar, 2023. "AI-Enabled marketing capabilities and the hierarchy of capabilities: Conceptualization, proposition development, and research avenues," Journal of Business Research, Elsevier, vol. 157(C).
    13. Changhao Zhang & Mengyu Ren, 2023. "Customer service robot model based on e-commerce dual-channel channel supply coordination and compensation strategy in the perspective of big data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(2), pages 591-601, April.
    14. Chen, Xia & Geyer, Philipp, 2022. "Machine assistance in energy-efficient building design: A predictive framework toward dynamic interaction with human decision-making under uncertainty," Applied Energy, Elsevier, vol. 307(C).
    15. Moll, Jodie & Yigitbasioglu, Ogan, 2019. "The role of internet-related technologies in shaping the work of accountants: New directions for accounting research," The British Accounting Review, Elsevier, vol. 51(6).
    16. Martin Obschonka & David B. Audretsch, 2020. "Artificial intelligence and big data in entrepreneurship: a new era has begun," Small Business Economics, Springer, vol. 55(3), pages 529-539, October.
    17. Sina Shaffiee Haghshenas & Behrouz Pirouz & Sami Shaffiee Haghshenas & Behzad Pirouz & Patrizia Piro & Kyoung-Sae Na & Seo-Eun Cho & Zong Woo Geem, 2020. "Prioritizing and Analyzing the Role of Climate and Urban Parameters in the Confirmed Cases of COVID-19 Based on Artificial Intelligence Applications," IJERPH, MDPI, vol. 17(10), pages 1-21, May.
    18. Efrat Taig & Ohad Ben-Shahar, 2019. "Gradient Surfing: A New Deterministic Approach for Low-Dimensional Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 855-878, March.
    19. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    20. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "State Space Approach to Adaptive Fuzzy Modeling: Application to Financial Investment," CIRJE F-Series CIRJE-F-1067, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:1:d:10.1007_s11069-023-06137-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.