IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025001656.html
   My bibliography  Save this article

Assessing human situation awareness reliability considering fatigue and mood using EEG data: A Bayesian neural network-Bayesian network approach

Author

Listed:
  • Ding, Song
  • Hu, Lunhu
  • Pan, Xing
  • Zuo, Dujun
  • Sun, Liuwang

Abstract

Situation awareness (SA) assessment is the process of acquiring and maintaining SA, which serves as a crucial indicator of operator task performance and behavioral safety in human-machine interaction. SA reliability is the evaluation of how well SA is established, and it is also the goal of SA assessment. Nonetheless, current SA assessment models rarely consider the influence of human physiological states, such as fatigue and mood, and rely heavily on subjective data. To address these deficiencies, this paper proposes a SA assessment model based on a Bayesian Neural Network (BNN) and Bayesian Network (BN), with a focus on examining the impact of fatigue and mood on the SA reliability. Firstly, fatigue and mood state classification models are developed using EEG data based on a BNN, and the uncertainty is assessed. Secondly, a BN model for SA reliability evaluation is proposed, where the uncertainty of BNN outputs is used as the prior probability, and conditional probability tables are established based on experimental statistics. Finally, a SA experiment is conducted using a civil aviation scenario based on the SAGAT platform to validate the proposed model. This model overcomes the limitations of previous approaches by leveraging objective physiological data and experimental statistics to infer the influence of physiological states on the SA reliability.

Suggested Citation

  • Ding, Song & Hu, Lunhu & Pan, Xing & Zuo, Dujun & Sun, Liuwang, 2025. "Assessing human situation awareness reliability considering fatigue and mood using EEG data: A Bayesian neural network-Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001656
    DOI: 10.1016/j.ress.2025.110962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baraldi, Piero & Mangili, Francesca & Zio, Enrico, 2013. "Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 94-108.
    2. Sui, Zhongyi & Wang, Shuaian, 2025. "Traffic advisory for ship encounter situation based on linear dynamic system," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    3. Li, Jue & Li, Heng & Wang, Fan & Cheng, Andy S.K. & Yang, Xincong & Wang, Hongwei, 2021. "Proactive analysis of construction equipment operators’ hazard perception error based on cognitive modeling and a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Pan, Xing & Zuo, Dujun & Zhang, Wenjin & Hu, Lunhu & Wang, Huixiong & Jiang, Jing, 2021. "Research on Human Error Risk Evaluation Using Extended Bayesian Networks with Hybrid Data," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Panakkal, Pranavesh & Padgett, Jamie Ellen, 2024. "More eyes on the road: Sensing flooded roads by fusing real-time observations from public data sources," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    7. Domeh, Vindex & Obeng, Francis & Khan, Faisal & Bose, Neil & Sanli, Elizabeth, 2023. "An operational risk awareness tool for small fishing vessels operating in harsh environment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. You, Qidong & Guo, Jianbin & Zeng, Shengkui & Che, Haiyang, 2024. "A dynamic Bayesian network based reliability assessment method for short-term multi-round situation awareness considering round dependencies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Kwon, Yongchan & Won, Joong-Ho & Kim, Beom Joon & Paik, Myunghee Cho, 2020. "Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
    10. Li, Qinbiao & Ng, Kam K.H. & Yiu, Cho Yin & Yuan, Xin & So, Chun Kiu & Ho, Chun Chung, 2023. "Securing air transportation safety through identifying pilot's risky VFR flying behaviours: An EEG-based neurophysiological modelling using machine learning algorithms," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    11. Naderpour, Mohsen & Lu, Jie & Zhang, Guangquan, 2016. "A safety-critical decision support system evaluation using situation awareness and workload measures," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 147-159.
    12. Naderpour, Mohsen & Lu, Jie & Zhang, Guangquan, 2015. "An abnormal situation modeling method to assist operators in safety-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 33-47.
    13. Fan, Shiqi & Yang, Zaili, 2024. "Accident data-driven human fatigue analysis in maritime transport using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Kim, Man Cheol & Seong, Poong Hyun, 2006. "An analytic model for situation assessment of nuclear power plant operators based on Bayesian inference," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 270-282.
    15. Sonal, & Ghosh, Debomita, 2022. "Impact of situational awareness attributes for resilience assessment of active distribution networks using hybrid dynamic Bayesian multi criteria decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Lee, Hyun-Chul & Seong, Poong-Hyun, 2009. "A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1796-1805.
    18. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    19. Zoubin Ghahramani, 2015. "Probabilistic machine learning and artificial intelligence," Nature, Nature, vol. 521(7553), pages 452-459, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Jianbin & Ma, Shuo & Zeng, Shengkui & Che, Haiyang & Pan, Xing, 2024. "A risk evaluation method for human-machine interaction in emergencies based on multiple mental models-driven situation assessment," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    2. You, Qidong & Guo, Jianbin & Zeng, Shengkui & Che, Haiyang, 2024. "A dynamic Bayesian network based reliability assessment method for short-term multi-round situation awareness considering round dependencies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Atashfeshan, Nooshin & Saidi-Mehrabad, Mohammad & Razavi, Hamideh, 2021. "A novel dynamic function allocation method in human-machine systems focusing on trigger mechanism and allocation strategy," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    5. Li, Xin & Chen, Chao & Hong, Yi-du & Yang, Fu-qiang, 2023. "Exploring hazardous chemical explosion accidents with association rules and Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    7. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    10. Zhou, Jian-Lan & Yu, Ze-Tai & Xiao, Ren-Bin, 2022. "A large-scale group Success Likelihood Index Method to estimate human error probabilities in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2023. "A traceable process to develop Bayesian networks from scarce data and expert judgment: A human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Pan, Xing & Du, Hengte & Yu, Haofan, 2024. "A method for safety analysis of human-machine systems based on dynamic Bayesian simulation," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    13. Gan, Langxiong & Gao, Ziyi & Zhang, Xiyu & Xu, Yi & Liu, Ryan Wen & Xie, Cheng & Shu, Yaqing, 2025. "Graph neural networks enabled accident causation prediction for maritime vessel traffic," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    14. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "State Space Approach to Adaptive Artificial Intelligence Modeling: Application to Financial Portfolio with Fuzzy System," CARF F-Series CARF-F-422, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    16. Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    17. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    18. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    19. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Amit Kumar Kushwaha & Arpan Kumar Kar, 2024. "MarkBot – A Language Model-Driven Chatbot for Interactive Marketing in Post-Modern World," Information Systems Frontiers, Springer, vol. 26(3), pages 857-874, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.