IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007524.html
   My bibliography  Save this article

A dynamic Bayesian network based reliability assessment method for short-term multi-round situation awareness considering round dependencies

Author

Listed:
  • You, Qidong
  • Guo, Jianbin
  • Zeng, Shengkui
  • Che, Haiyang

Abstract

During abnormal situations, the perception, comprehension, and projection of elements related to abnormality, i.e., situation awareness (SA), is one of the critical factors to guarantee system safety, and dynamically achieved in short-term multi-round interactions. The short-term multi-round SA (STMR-SA) experiences round dependencies due to anchoring effect (AE) and confirmation bias (CB). For SA in current round, AE biases judgement of system states towards previous cognition, and CB leads to neglect of information disproving previous opinion. Therefore, AE and CB mutually promote and impede the correction of STMR-SA errors. The effects of AE and CB on STMR-SA have been verified in qualitative research but disregarded in quantitative STMR-SA reliability assessments. This paper aims to propose a novel STMR-SA reliability assessment method considering AE-caused and CB-caused round dependencies. First, a round dependency model (RDM) is developed to quantify above-mentioned round dependencies. Subsequently, STMR-SA evolution is modeled with dynamic Bayesian network, where round dependencies are represented by connections between adjacent time slices and quantified by RDM. Case study on Boeing 737-8 (MAX) accident demonstrates the effectiveness of this method. Results indicates that improvement measures including adding angle of attack (AOA) disagree warning and training enhancement, could improve the STMR-SA reliability and system safety.

Suggested Citation

  • You, Qidong & Guo, Jianbin & Zeng, Shengkui & Che, Haiyang, 2024. "A dynamic Bayesian network based reliability assessment method for short-term multi-round situation awareness considering round dependencies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007524
    DOI: 10.1016/j.ress.2023.109838
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007524
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.