IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002170.html
   My bibliography  Save this article

Reliability modeling for three-version machine learning systems through Bayesian networks

Author

Listed:
  • Wen, Qiang
  • Machida, Fumio

Abstract

Machine learning (ML) is extensively employed in AI-powered systems including safety-critical applications such as autonomous vehicles. The outputs from ML models are sensitive to real-world input data and error-prone, thereby improving the reliability of ML systems’ outputs has become a critical challenge in ML system design. In this paper, we introduce N-version ML architectures to enhance the ML system reliability and propose Bayesian Networks (BNs) models to evaluate the reliability of system outputs targeting three-version ML systems. The proposed BN reliability models allow us to formulate five distinct types of three-version ML architectures that are composed of diverse models and diverse input data sources. To validate the BN reliability models with real samples from ML systems, we conduct empirical studies on traffic sign recognition tasks and evaluate prediction performance. As a result, we find the prediction residuals between the observed reliability and the predicted reliability by the BN reliability models are less than 0.015 across all data sets, which is much better than the prediction performance by the baseline model. In addition, in comparison to the previous reliability models without exploiting BNs, the proposed models exhibit an advantage in reliability prediction, except for the triple model with single input architecture.

Suggested Citation

  • Wen, Qiang & Machida, Fumio, 2025. "Reliability modeling for three-version machine learning systems through Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002170
    DOI: 10.1016/j.ress.2025.111016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Caetano, Henrique O. & N., Luiz Desuó & Fogliatto, Matheus S.S. & Maciel, Carlos D., 2024. "Resilience assessment of critical infrastructures using dynamic Bayesian networks and evidence propagation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Yu, Yaocheng & Shuai, Bin & Huang, Wencheng, 2024. "Resilience evaluation of train control on-board system considering common cause failure: Based on a beta-factor and continuous-time bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Chen, Guohua & Li, Geliang & Xie, Mulin & Xu, Qiming & Zhang, Geng, 2024. "A probabilistic analysis method based on Noisy-OR gate Bayesian network for hydrogen leakage of proton exchange membrane fuel cell," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. You, Qidong & Guo, Jianbin & Zeng, Shengkui & Che, Haiyang, 2024. "A dynamic Bayesian network based reliability assessment method for short-term multi-round situation awareness considering round dependencies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Bibartiu, Otto & Dürr, Frank & Rothermel, Kurt & Ottenwälder, Beate & Grau, Andreas, 2021. "Scalable k-out-of-n models for dependability analysis with Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Zhang, Jinfeng & Jin, Mei & Wan, Chengpeng & Dong, Zhijie & Wu, Xiaohong, 2024. "A Bayesian network-based model for risk modeling and scenario deduction of collision accidents of inland intelligent ships," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Kammouh, Omar & Gardoni, Paolo & Cimellaro, Gian Paolo, 2020. "Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schneider, Moritz & Halekotte, Lukas & Comes, Tina & Lichte, Daniel & Fiedrich, Frank, 2025. "Emergency Response Inference Mapping (ERIMap): A Bayesian network-based method for dynamic observation processing," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    2. Liu, Guanyi & Liu, Shifeng & Li, Xuewei & Li, Xueyan & Gong, Daqing, 2025. "Multiscenario deduction analysis for railway emergencies using knowledge metatheory and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    3. Yu, Yaocheng & Shuai, Bin & Huang, Wencheng, 2024. "Resilience evaluation of train control on-board system considering common cause failure: Based on a beta-factor and continuous-time bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    4. Dou, Qiang & Lu, Da-Gang & Zhang, Bo-Yi, 2025. "Physical resilience assessment of road transportation systems during post-earthquake emergency phase: With a focus on restoration modeling based on dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    5. Li, Fan & Zhai, Changhai & Qin, Hao, 2024. "Post-earthquake functional state assessment of communication base station using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    6. Tao, Haohan & Jia, Peng & Wang, Xiangyu & Wang, Liquan, 2024. "Reliability analysis of subsea control module based on dynamic Bayesian network and digital twin," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    7. Mousavi, Milad & Shen, Xuesong & Zhang, Zhigang & Barati, Khalegh & Li, Binghao, 2025. "IoT-Bayes fusion: Advancing real-time environmental safety risk monitoring in underground mining and construction," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    8. Li, Haiwen & Qi, Lin & Wang, Mudan & Liu, Junying, 2025. "Operational resilience modeling of cross-border freight railway systems: A study of strategies to improve proactive and reactive capabilities," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    9. Liu, Jin & Zhai, Changhai & Yu, Peng, 2022. "A Probabilistic Framework to Evaluate Seismic Resilience of Hospital Buildings Using Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Zhang, Lu & Cui, Li & Chen, Lujie & Dai, Jing & Jin, Ziyi & Wu, Hao, 2023. "A hybrid approach to explore the critical criteria of online supply chain finance to improve supply chain performance," International Journal of Production Economics, Elsevier, vol. 255(C).
    11. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    12. Barati, Hojjat & Yazici, Anil & Almotahari, Amirmasoud, 2024. "A methodology for ranking of critical links in transportation networks based on criticality score distributions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    13. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    15. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    16. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    17. Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    18. Wang, Yuhong & Li, Pengchang & Hong, Cheng & Yang, Zaili, 2025. "Causation analysis of ship collisions using a TM-FRAM model," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    19. Du, Jianwei & Ren, Gang & Cui, Jialei & Cao, Qi & Wang, Jian & Wu, Chenyang & Zhang, Jiefei, 2025. "Monitoring of operational resilience on urban road network: A Shaoxing case study," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    20. Ding, Song & Hu, Lunhu & Pan, Xing & Zuo, Dujun & Sun, Liuwang, 2025. "Assessing human situation awareness reliability considering fatigue and mood using EEG data: A Bayesian neural network-Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 260(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.