IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007767.html
   My bibliography  Save this article

A probabilistic analysis method based on Noisy-OR gate Bayesian network for hydrogen leakage of proton exchange membrane fuel cell

Author

Listed:
  • Chen, Guohua
  • Li, Geliang
  • Xie, Mulin
  • Xu, Qiming
  • Zhang, Geng

Abstract

The proton exchange membrane fuel cell (PEMFC) is one of the crucial power units of the hydrogen vehicle. This work proposes a method based on the Noisy-OR gate Bayesian network to evaluate the hydrogen leakage probability of PEMFC. The generation mechanism of hydrogen leakage in fuel cells was analyzed using the fault tree theory. The conditional probability was determined using the Noisy-OR gate model in the Bayesian network, and the probability of hydrogen leakage in the fuel cell was 0.04. Through sensitivity analysis, the key factors that can cause hydrogen leaks in fuel cell were identified. The method proposed in this study can aid in PEMFC accident prevention and control strategies.

Suggested Citation

  • Chen, Guohua & Li, Geliang & Xie, Mulin & Xu, Qiming & Zhang, Geng, 2024. "A probabilistic analysis method based on Noisy-OR gate Bayesian network for hydrogen leakage of proton exchange membrane fuel cell," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007767
    DOI: 10.1016/j.ress.2023.109862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jun & Zhang, Caizhi & Li, Jin & Deng, Bo & Fan, Min & Ni, Meng & Mao, Zhanxin & Yuan, Honggeng, 2021. "Multi-perspective analysis of CO poisoning in high-temperature proton exchange membrane fuel cell stack via numerical investigation," Renewable Energy, Elsevier, vol. 180(C), pages 313-328.
    2. Amin, Md. Tanjin & Khan, Faisal & Imtiaz, Syed, 2018. "Dynamic availability assessment of safety critical systems using a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 108-117.
    3. Ji, Chenyi & Su, Xing & Qin, Zhongfu & Nawaz, Ahsan, 2022. "Probability Analysis of Construction Risk based on Noisy-or Gate Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Dao, Uyen & Sajid, Zaman & Khan, Faisal & Zhang, Yahui & Tran, Trung, 2023. "Modeling and analysis of internal corrosion induced failure of oil and gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    8. Chen, Ben & Cai, Yonghua & Tu, Zhengkai & Chan, Siew Hwa & Wang, Jun & Yu, Yi, 2017. "Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation I. With different electrolytes," Energy, Elsevier, vol. 141(C), pages 40-49.
    9. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
    10. Domeh, Vindex & Obeng, Francis & Khan, Faisal & Bose, Neil & Sanli, Elizabeth, 2023. "An operational risk awareness tool for small fishing vessels operating in harsh environment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Sajjad Bahrebar & Frede Blaabjerg & Huai Wang & Navid Vafamand & Mohammad-Hassan Khooban & Sima Rastayesh & Dao Zhou, 2018. "A Novel Type-2 Fuzzy Logic for Improved Risk Analysis of Proton Exchange Membrane Fuel Cells in Marine Power Systems Application," Energies, MDPI, vol. 11(4), pages 1-16, March.
    12. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
    13. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    14. Haifeng Bian & Jun Zhang & Ruixue Li & Huanhuan Zhao & Xuexue Wang & Yiping Bai, 2021. "Risk analysis of tripping accidents of power grid caused by typical natural hazards based on FTA-BN model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1771-1795, April.
    15. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    16. Sima Rastayesh & Sajjad Bahrebar & Frede Blaabjerg & Dao Zhou & Huai Wang & John Dalsgaard Sørensen, 2019. "A System Engineering Approach Using FMEA and Bayesian Network for Risk Analysis—A Case Study," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    17. Vasilyev, A. & Andrews, J. & Dunnett, S.J. & Jackson, L.M., 2021. "Dynamic Reliability Assessment of PEM Fuel Cell Systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Yaocheng & Shuai, Bin & Huang, Wencheng, 2024. "Resilience evaluation of train control on-board system considering common cause failure: Based on a beta-factor and continuous-time bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Xiaosen & Yin, Yuan & Jiao, Liudan & Zhang, Yu, 2024. "A data-driven and knowledge graph-based analysis of the risk hazard coupling mechanism in subway construction accidents," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Yu, Xianxian & Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Endplate effect in an open-cathode proton exchange membrane fuel cell stack: Phenomenon and resolution," Renewable Energy, Elsevier, vol. 219(P1).
    3. Zhao, Lei & Hong, Jichao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Ming, Pingwen & Dai, Haifeng, 2023. "Investigation of local sensitivity for vehicle-oriented fuel cell stacks based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 262(PA).
    4. Tsoumpris, Charalampos & Theotokatos, Gerasimos, 2023. "A decision-making approach for the health-aware energy management of ship hybrid power plants," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Guo, Jian & Ma, Kaijiang, 2024. "Risk analysis for hazardous chemical vehicle-bridge transportation system: A dynamic Bayesian network model incorporating vehicle dynamics," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Liu, Yang & Zhao, Junjie & Tu, Zhengkai, 2024. "Detecting performance degradation in a dead-ended hydrogen-oxygen proton exchange membrane fuel cell used for an unmanned underwater vehicle," Renewable Energy, Elsevier, vol. 222(C).
    7. Zhang, Qiongfang & Yan, Hao & Liu, Yongming, 2024. "Power generation forecasting for solar plants based on Dynamic Bayesian networks by fusing multi-source information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    8. Yu, Xianxian & Guan, Yin & Cai, Shanshan & Tu, Zhengkai & Chan, Siew Hwa, 2024. "An experimental study on the hydrogen utilization in air-cooled proton exchange membrane fuel cell stack with a novel anode outlet design," Renewable Energy, Elsevier, vol. 231(C).
    9. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    10. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    11. Fu, Lipeng & Wang, Xueqing & Zhao, Heng & Li, Mengnan, 2022. "Interactions among safety risks in metro deep foundation pit projects: An association rule mining-based modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    13. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    14. Cabello González, G.M. & Toharias, Baltasar & Iranzo, Alfredo & Suárez, Christian & Rosa, Felipe, 2023. "Voltage distribution analysis and non-uniformity assessment in a 100 cm2 PEM fuel cell stack," Energy, Elsevier, vol. 282(C).
    15. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    16. Steinberger, Michael & Geiling, Johannes & Oechsner, Richard & Frey, Lothar, 2018. "Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas," Applied Energy, Elsevier, vol. 232(C), pages 572-582.
    17. Asadollahi, Arash & Esmaeeli, Asghar, 2018. "Simulation of condensation and liquid break-up on a micro-object with upper and lower movable walls using Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 33-49.
    18. Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.
    19. Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
    20. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.