IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i2d10.1007_s11069-023-05910-5.html
   My bibliography  Save this article

Semeru volcano, Indonesia: measuring hazard, exposure and response of densely populated neighbourhoods facing persistent volcanic threats

Author

Listed:
  • Jean-Claude Thouret

    (UMR 6524 CNRS, OPGC et IRD)

  • Marie Taillandier

    (UMR 6566, CNRS)

  • Emeline Wavelet

    (UMR 6524 CNRS, OPGC et IRD)

  • Nourddine Azzaoui

    (UMR 6566, CNRS)

  • Olivier Santoni

    (CNRS, IRD, CERDI)

  • Boedi Tjahjono

    (IPB University)

Abstract

We studied Semeru, East Java, Indonesia, to show the population exposure to volcanic threats from its persistent, daily eruptive activity which endangers at least 50,000 of the 950,000 inhabitants living on the East, South and South-East slopes and ring plain. Surveys, mapping and statistical investigation enabled us to assess the extent of exposure of 145 neighbourhoods (termed blocks) and characterize hazards and response to eruptions in 15 rural villages and small towns. Statistical analyses of datasets of 23 variables (11 of exposure, 7 of hazards, and 5 of response) and their attributes involved three operations: 1. Univariate and bivariate analyses enabled us to explore data and characterize the relationships between 11 variables to compute a multi-component exposure index. 2. Polytomous Logistic Regression (PLR) models selected six optimal exposure variables, suggesting that logistic regression can predict the exposure index for blocks outside the survey area and potentially on any active volcano. 3. Multivariate analyses and Hierarchical Agglomerative Clustering (HAC) distinguished four groups of blocks based on attributes of all variables correlated with the exposure index score. To contribute to disaster risk reduction, the distance/time criterion was applied to access ways and response facilities to highlight remote or blocked blocks in danger of imminent eruption including evacuation. Statistical analysis of optimal variables from local scale surveys can help identify neighbourhoods where disaster risk mitigation requires improvement.

Suggested Citation

  • Jean-Claude Thouret & Marie Taillandier & Emeline Wavelet & Nourddine Azzaoui & Olivier Santoni & Boedi Tjahjono, 2023. "Semeru volcano, Indonesia: measuring hazard, exposure and response of densely populated neighbourhoods facing persistent volcanic threats," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1405-1453, June.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:2:d:10.1007_s11069-023-05910-5
    DOI: 10.1007/s11069-023-05910-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05910-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05910-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiwon Lee & Midam An & Yongku Kim & Jung-In Seo, 2021. "Optimal Allocation for Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(18), pages 1-10, September.
    2. Benjamin G Schultz & Catherine J Stevens & Peter E Keller & Barbara Tillmann, 2013. "A Sequence Identification Measurement Model to Investigate the Implicit Learning of Metrical Temporal Patterns," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
    3. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    4. Andreas Wienke & Anne M. Herskind & Kaare Christensen & Axel Skytthe & Anatoli I. Yashin, 2002. "The influence of smoking and BMI on heritability in susceptibility to coronary heart disease," MPIDR Working Papers WP-2002-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    5. Byrd, T. A. & Marshall, T. E., 1997. "Relating information technology investment to organizational performance: a causal model analysis," Omega, Elsevier, vol. 25(1), pages 43-56, February.
    6. Berry, Brian J.L. & Okulicz-Kozaryn, Adam, 2008. "Are there ENSO signals in the macroeconomy," Ecological Economics, Elsevier, vol. 64(3), pages 625-633, January.
    7. Nicos Nicolaou & Scott Shane, 2019. "Common genetic effects on risk-taking preferences and choices," Journal of Risk and Uncertainty, Springer, vol. 59(3), pages 261-279, December.
    8. Stephen Richards, 2010. "Author's response," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(4), pages 920-924, October.
    9. Ken B Hanscombe & Maciej Trzaskowski & Claire M A Haworth & Oliver S P Davis & Philip S Dale & Robert Plomin, 2012. "Socioeconomic Status (SES) and Children's Intelligence (IQ): In a UK-Representative Sample SES Moderates the Environmental, Not Genetic, Effect on IQ," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-16, February.
    10. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    11. Oh, Man-Suk, 2014. "Bayesian comparison of models with inequality and equality constraints," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 176-182.
    12. Satonori Nasu & Yu Ishibashi & Junichi Ikuta & Shingo Yamane & Ryuji Kobayashi, 2022. "Reliability and Validity of the Japanese Version of the Assessment of Readiness for Mobility Transition (ARMT-J) for Japanese Elderly," IJERPH, MDPI, vol. 19(21), pages 1-14, October.
    13. Bonaiuto, M. & Mosca, O. & Milani, A. & Ariccio, S. & Dessi, F. & Fornara, F., 2024. "Beliefs about technological and contextual features drive biofuels’ social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    15. Ribeiro da Silva, Diana & Lindberg, Nina & Garofalo, Carlo, 2025. "Exploring mental health profiles of male youth detained in forensic settings: Implications for research and clinical practice," Journal of Criminal Justice, Elsevier, vol. 97(C).
    16. repec:cdl:uctcwp:qt40q8h6sf is not listed on IDEAS
    17. Schreier, Alayna & Stenersen, Madeline R. & Strambler, Michael J. & Marshall, Tim & Bracey, Jeana & Kaufman, Joy S., 2023. "Needs of caregivers of youth enrolled in a statewide system of care: A latent class analysis," Children and Youth Services Review, Elsevier, vol. 147(C).
    18. Daisuke Matsumoto & Fujio Inui & Chika Honda & Rie Tomizawa & Mikio Watanabe & Karri Silventoinen & Norio Sakai, 2020. "Heritability and Environmental Correlation of Phase Angle with Anthropometric Measurements: A Twin Study," IJERPH, MDPI, vol. 17(21), pages 1-10, October.
    19. Sanjay Gupta & Kushagra Sinha, 2022. "Assessing the Factors Impacting Transport Usage of Mobility App Users in the National Capital Territory of Delhi, India," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    20. Schomaker Michael & Heumann Christian, 2011. "Model Averaging in Factor Analysis: An Analysis of Olympic Decathlon Data," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(1), pages 1-15, January.
    21. Naiara Escalante Mateos & Eider Goñi Palacios & Arantza Fernández-Zabala & Iratxe Antonio-Agirre, 2020. "Internal Structure, Reliability and Invariance across Gender Using the Multidimensional School Climate Scale PACE-33," IJERPH, MDPI, vol. 17(13), pages 1-24, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:2:d:10.1007_s11069-023-05910-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.