IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v112y2022i3d10.1007_s11069-022-05267-1.html
   My bibliography  Save this article

Improving the performance of city-scale hydrodynamic flood modelling through a GIS-based DEM correction method

Author

Listed:
  • Yun Xing

    (Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology)

  • Huili Chen

    (Loughborough University)

  • Qiuhua Liang

    (Loughborough University)

  • Xieyao Ma

    (Nanjing University of Information Science and Technology)

Abstract

Flood modelling can provide useful information to support flood risk assessment and management. The accuracy of flood simulation results is highly dependent on the quality of input data. In particular, digital elevation models (DEMs) may directly influence the performance of flood predictions and improper representation of complex urban features including buildings and bridges may lead to incorrect prediction of flooding paths and extents, and consequently miscalculate flood risk. In this work, a geographic information system (GIS)-based correction method is proposed to make modifications in high-resolution DEMs by adding building complexes and removing unphysical representations of bridges for a more realistic description of flood paths in considering the flow connectivity in intensely urbanized areas and with the objective of obtaining more accurate flood simulation results. The proposed DEM correction method is applied to support large-scale urban flood modelling in Fuzhou City, China, using an established hydrodynamic flood model known as High-Performance Integrated hydrodynamic Modelling System (HiPIMS). Comparisons are made to the simulation results with and without the DEM improvements using the proposed correction method. The results demonstrate that correct representation of the artificial structures in the urban DEM can significantly improve the flood simulation results.

Suggested Citation

  • Yun Xing & Huili Chen & Qiuhua Liang & Xieyao Ma, 2022. "Improving the performance of city-scale hydrodynamic flood modelling through a GIS-based DEM correction method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2313-2335, July.
  • Handle: RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05267-1
    DOI: 10.1007/s11069-022-05267-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05267-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05267-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Nirupama & Slobodan Simonovic, 2007. "Increase of Flood Risk due to Urbanisation: A Canadian Example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 25-41, January.
    2. Richard Dawson & Roger Peppe & Miao Wang, 2011. "An agent-based model for risk-based flood incident management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 167-189, October.
    3. Julien Ernst & Benjamin Dewals & Sylvain Detrembleur & Pierre Archambeau & Sébastien Erpicum & Michel Pirotton, 2010. "Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 181-209, November.
    4. P. C. D. Milly & R. T. Wetherald & K. A. Dunne & T. L. Delworth, 2002. "Increasing risk of great floods in a changing climate," Nature, Nature, vol. 415(6871), pages 514-517, January.
    5. Susan Hanson & Robert Nicholls & N. Ranger & S. Hallegatte & J. Corfee-Morlot & C. Herweijer & J. Chateau, 2011. "A global ranking of port cities with high exposure to climate extremes," Climatic Change, Springer, vol. 104(1), pages 89-111, January.
    6. Alan D. Ziegler, 2012. "Reduce urban flood vulnerability," Nature, Nature, vol. 481(7380), pages 145-145, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hengxu Jin & Xiaoping Rui & Xiaoyan Li, 2022. "Analysing the Performance of Four Hydrological Models in a Chinese Arid and Semi-Arid Catchment," Sustainability, MDPI, vol. 14(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grames, Johanna & Prskawetz, Alexia & Grass, Dieter & Viglione, Alberto & Blöschl, Günter, 2016. "Modeling the interaction between flooding events and economic growth," Ecological Economics, Elsevier, vol. 129(C), pages 193-209.
    2. Yun Xing & Qiuhua Liang & Gang Wang & Xiaodong Ming & Xilin Xia, 2019. "City-scale hydrodynamic modelling of urban flash floods: the issues of scale and resolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 473-496, March.
    3. Robert Nicholls & Barbara Zanuttigh & Jean Paul Vanderlinden & Ralf Weisse & Rodolfo Silva & Susan Hanson & Siddarth Narayan & Simon Hoggart & Richard C. Thompson & Wout de Vries & Phoebe Koundouri, 2015. "Developing a Holistic Approach to Assessing and Managing Coastal Flood Risk," DEOS Working Papers 1521, Athens University of Economics and Business.
    4. Jidong Wu & Ying Li & Ning Li & Peijun Shi, 2018. "Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 17-30, January.
    5. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    6. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    7. Piyapong Suwanno & Chaiwat Yaibok & Noriyasu Tsumita & Atsushi Fukuda & Kestsirin Theerathitichaipa & Manlika Seefong & Sajjakaj Jomnonkwao & Rattanaporn Kasemsri, 2023. "Estimation of the Evacuation Time According to Different Flood Depths," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    8. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    9. Mehryar, Sara & Sasson, Idan & Surminski, Swenja, 2022. "Supporting urban adaptation to climate change: what role can resilience measurement tools play?," LSE Research Online Documents on Economics 113367, London School of Economics and Political Science, LSE Library.
    10. Sheng He & Dongmei Wang & Xuefeng Sang & Geng Niu, 2024. "Water Resource Regulation and Evaluation Method Based on Optimization of Drought-Limited Water Level in Reservoir Group," Sustainability, MDPI, vol. 16(16), pages 1-36, August.
    11. Hung-Chih Hung & Ming-Chin Ho & Yi-Jie Chen & Chang-Yi Chian & Su-Ying Chen, 2013. "Integrating long-term seismic risk changes into improving emergency response and land-use planning: a case study for the Hsinchu City, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 491-508, October.
    12. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    13. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    14. Hemen Mark Butu & Yongwon Seo & Jeung Soo Huh, 2020. "Determining Extremes for Future Precipitation in South Korea Based on RCP Scenarios Using Non-Parametric SPI," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    15. Matthias Garschagen & Gusti Ayu Ketut Surtiari & Mostapha Harb, 2018. "Is Jakarta’s New Flood Risk Reduction Strategy Transformational?," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    16. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    17. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    18. Michael Berlemann & Gerit Vogt, 2007. "Kurzfristige Wachstumseffekte von Naturkatastrophen," ifo Working Paper Series 52, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    19. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    20. Mohammad Asif Hasan Khan & Pallab Mozumder & Nafisa Halim & Sisi Meng, 2025. "Understanding Evacuation Behavior During Cyclones: Evidence from Bangladesh," Economics of Disasters and Climate Change, Springer, vol. 9(1), pages 107-133, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05267-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.