IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7015-d1457219.html
   My bibliography  Save this article

Water Resource Regulation and Evaluation Method Based on Optimization of Drought-Limited Water Level in Reservoir Group

Author

Listed:
  • Sheng He

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Dongmei Wang

    (Jiangsu Hydraulic Research Institute, Nanjing 210017, China)

  • Xuefeng Sang

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Geng Niu

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

Abstract

Reservoirs, as critical nodes in regional water management, play an increasingly important role in drought mitigation. This study aims to optimize the drought-limited water level in the reservoir group and propose an evaluation method for selecting the optimal regulation scheme during drought periods. The reservoir water supply module within the Water Allocation and Simulation (WAS) model was enhanced to optimize the drought-limited water level of the reservoir group. A comprehensive adaptation index (CAI) was developed to quantitatively evaluate the effectiveness of water resource regulation under various drought scenarios. This methodology was applied to large and medium-sized reservoirs in the central Yunnan Province, China. The results show that the optimized drought-limited water level significantly improved the water supply performance of the reservoir group during drought years. Specifically, the optimized drought-limited water level notably reduced severe water shortage for water users in the long series and typical drought years, effectively mitigating the impacts of drought. Additionally, the most suitable water resource regulation strategies for different drought scenarios were identified. These research findings can provide technical references for reservoir management departments and drought operations authorities to formulate drought-limited level for the reservoir group and implement regional drought early warning and defense decision-making.

Suggested Citation

  • Sheng He & Dongmei Wang & Xuefeng Sang & Geng Niu, 2024. "Water Resource Regulation and Evaluation Method Based on Optimization of Drought-Limited Water Level in Reservoir Group," Sustainability, MDPI, vol. 16(16), pages 1-36, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7015-:d:1457219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roelien Goede & Christine Boshuizen‐van Burken, 2019. "A critical systems thinking approach to empower refugees based on Maslow's theory of human motivation," Systems Research and Behavioral Science, Wiley Blackwell, vol. 36(5), pages 715-726, September.
    2. Qiang Wang & Wei Ding & Yan Wang, 2018. "Optimization of Multi-Reservoir Operating Rules for a Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4543-4559, November.
    3. P. C. D. Milly & R. T. Wetherald & K. A. Dunne & T. L. Delworth, 2002. "Increasing risk of great floods in a changing climate," Nature, Nature, vol. 415(6871), pages 514-517, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    2. Berlemann, Michael, 2015. "Hurricane Risk, Happiness and Life Satisfaction. Some Empirical Evidence on the Indirect Effects of Natural Disasters," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113073, Verein für Socialpolitik / German Economic Association.
    3. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    4. Abedifar, Pejman & Kashizadeh, Seyed Javad & Ongena, Steven, 2024. "Flood, farms and credit: The role of branch banking in the era of climate change," Journal of Corporate Finance, Elsevier, vol. 85(C).
    5. Teodor Kitczak & Heidi Jänicke & Marek Bury & Ryszard Malinowski, 2021. "The Usefulness of Mixtures with Festulolium braunii for the Regeneration of Grassland under Progressive Climate Change," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    6. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    7. Michael Bernardi & Christa Hainz & Paulina Maier & Maria Waldinger, 2023. "A “Green Revolution” for Sub-Saharan Africa? Challenges and Opportunities," EconPol Policy Brief 54, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    8. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    9. Aparna Gupta & Abena Owusu & Jue Wang, 2024. "Assessing U.S. insurance firms' climate change impact and response," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(3), pages 571-604, July.
    10. Yujie Zhang, 2023. "The role of victim sensitivity between anti-welfare dependence attitude and mental health of older adults in China," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    11. Pratyush Tripathy & Teja Malladi, 2022. "Global Flood Mapper: a novel Google Earth Engine application for rapid flood mapping using Sentinel-1 SAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1341-1363, November.
    12. Sechindra Vallury & Bryan Leonard, 2022. "Canals, climate, and corruption: The provisioning of public infrastructure under uncertainty," Economics and Politics, Wiley Blackwell, vol. 34(1), pages 221-252, March.
    13. Jaime Urrutia-Fucugauchi & Israel Fernández-Martínez & Axel Lara-Omaña & Carlos Rosales-Armendariz & Tereza Cavazos & Ligia Pérez-Cruz & Julián Zapotitla-Roman, 2025. "LiDAR and photogrammetric study of the Acapulco bay after the October 2023 Otis hurricane in southern Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(13), pages 15733-15750, July.
    14. repec:fpr:2020cp:5(5 is not listed on IDEAS
    15. Jan Skála & Radim Vácha & Pavel Čupr, 2018. "Which Compounds Contribute Most to Elevated Soil Pollution and the Corresponding Health Risks in Floodplains in the Headwater Areas of the Central European Watershed?," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    16. David Ocio & Christian Stocker & Ángel Eraso & Arantza Martínez & José María Sanz Galdeano, 2016. "Towards a reliable and cost-efficient flood risk management: the case of the Basque Country (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 617-639, March.
    17. Yun Xing & Huili Chen & Qiuhua Liang & Xieyao Ma, 2022. "Improving the performance of city-scale hydrodynamic flood modelling through a GIS-based DEM correction method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2313-2335, July.
    18. David Marcolino Nielsen & Marcio Cataldi & André Luiz Belém & Ana Luiza Spadano Albuquerque, 2016. "Local indices for the South American monsoon system and its impacts on Southeast Brazilian precipitation patterns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 909-928, September.
    19. Andrew C. Ross & Raymond G. Najjar, 2019. "Evaluation of methods for selecting climate models to simulate future hydrological change," Climatic Change, Springer, vol. 157(3), pages 407-428, December.
    20. Michael Berlemann & Gerit Vogt, 2007. "Kurzfristige Wachstumseffekte von Naturkatastrophen," Working Paper 69/2007, Helmut Schmidt University, Hamburg.
    21. Dandan Zhang & Juqin Shen & Pengfei Liu & Fuhua Sun, 2020. "Allocation of Flood Drainage Rights Based on the PSR Model and Pythagoras Fuzzy TOPSIS Method," IJERPH, MDPI, vol. 17(16), pages 1-19, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7015-:d:1457219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.