IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i2d10.1007_s11069-020-04392-z.html
   My bibliography  Save this article

Hydrodynamic modelling and vulnerability analysis to assess flood risk in a dense Indian city using geospatial techniques

Author

Listed:
  • Sutapa Bhattacharjee

    (Indian Institute of Technology)

  • Pramod Kumar

    (Indian Institute of Remote Sensing)

  • Praveen K. Thakur

    (Indian Institute of Remote Sensing)

  • Kshama Gupta

    (Indian Institute of Remote Sensing)

Abstract

Urban flooding and waterlogging are causing menace in many cities around the world from the perspective of day-to-day functioning, health and hygiene, communication, and the consequent damages they cause to urban environment. The present study is an attempt to understand the urban flood risks in parts of Bhubaneswar City, India, based on its hydrodynamic set-up and level of urbanisation. The Storm Water Management Model is used for peak flow analysis, and the flooding extent has been assessed while taking into consideration the elevation, slope, land use/land cover (LULC) and design Storm Water Drain (SWD) infrastructure of the city. The micro-watersheds for each SWD are delineated using digital surface model derived from airborne Light Detection and Ranging (LiDAR) data (1 m), and the LULC information is obtained from high-resolution optical remote sensing data. After the model simulation, it is estimated that peak runoff is relatively higher, i.e. 0.1–0.5 cumecs for a large number of micro-watersheds, even rising to more than 1.5 cumecs for some, indicating the severity of urban floods in the city. After integrating the simulated flooding pattern with the vulnerability associated with socio-economic characteristics of urban dwellers, the flood risk has been assessed. The study suggests that capacity of design SWD systems needs augmentation according to present and predicted flooding conditions for the city.

Suggested Citation

  • Sutapa Bhattacharjee & Pramod Kumar & Praveen K. Thakur & Kshama Gupta, 2021. "Hydrodynamic modelling and vulnerability analysis to assess flood risk in a dense Indian city using geospatial techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2117-2145, January.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04392-z
    DOI: 10.1007/s11069-020-04392-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04392-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04392-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deepak Singh Bisht & Chandranath Chatterjee & Shivani Kalakoti & Pawan Upadhyay & Manaswinee Sahoo & Ambarnil Panda, 2016. "Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 749-776, November.
    2. K. Sowmya & C. John & N. Shrivasthava, 2015. "Urban flood vulnerability zoning of Cochin City, southwest coast of India, using remote sensing and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1271-1286, January.
    3. Raffaele De Risi & Fatemeh Jalayer & Francesco De Paola & Stefano Carozza & Nebyou Yonas & Maurizio Giugni & Paolo Gasparini, 2020. "From flood risk mapping toward reducing vulnerability: the case of Addis Ababa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 387-415, January.
    4. Kyunghun Min & Moonyoung Yoon & Katsunori Furuya, 2019. "A Comparison of a Smart City’s Trends in Urban Planning before and after 2016 through Keyword Network Analysis," Sustainability, MDPI, vol. 11(11), pages 1-25, June.
    5. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    6. Sally P. Caird & Stephen H. Hallett, 2019. "Towards evaluation design for smart city development," Journal of Urban Design, Taylor & Francis Journals, vol. 24(2), pages 188-209, March.
    7. Honghai Qi & M. Altinakar, 2011. "Simulation-based decision support system for flood damage assessment under uncertainty using remote sensing and census block information," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 1125-1143, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    2. Shubham Awasthi & Divyesh Varade & Sutapa Bhattacharjee & Hemant Singh & Sana Shahab & Kamal Jain, 2022. "Assessment of Land Deformation and the Associated Causes along a Rapidly Developing Himalayan Foothill Region Using Multi-Temporal Sentinel-1 SAR Datasets," Land, MDPI, vol. 11(11), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    2. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    3. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    4. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    5. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    6. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    7. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    8. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    9. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    10. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    11. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    12. Jitendar Kumar Khatri & Bhimaraya Metri, 2016. "SWOT-AHP Approach for Sustainable Manufacturing Strategy Selection: A Case of Indian SME," Global Business Review, International Management Institute, vol. 17(5), pages 1211-1226, October.
    13. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    15. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    16. Om Prakash Mishra & Mahesh Chand & Krishan Kumar & Prashant Mishra, 2023. "Investigating applicability of green supply chain management in manufacturing sectors," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1183-1196, August.
    17. David Han-Min Wang & Quang Linh Huynh, 2013. "Mediating Role of Knowledge Management in Effect of Management Accounting Practices on Firm Performance," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 3(3), pages 1-10, June.
    18. Luis Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Alejandro Alvarado-Iniesta & David Luviano Cruz & Zeshui Xu, 2018. "MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    19. Neha Arora & Naresh Kumar, 2021. "Does Financial Inclusion Promote Human Development? Evidence from India," Jindal Journal of Business Research, , vol. 10(2), pages 163-184, December.
    20. Hossain, Mohammad Khalid & Meng, Qingmin, 2020. "A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood," Land Use Policy, Elsevier, vol. 99(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04392-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.