Author
Listed:
- Anisha Das
(NIT Rourkela)
- Sanat Nalini Sahoo
(NIT Rourkela)
Abstract
Urban floods are prevalent issue in India, especially during the rainy season i.e. June to September. While rural floods are mainly caused by excessive river discharge, urban floods result from factors like rapid urbanization and climate change. As cities expand, they cover more land with impermeable surfaces, exacerbating flooding risks. This study investigates the impact of land use and climate change on urban and peri-urban areas within the Extended Bhubaneswar Development Authority zone in India. CMIP6 Global Climate model NorESM2-MM and SSP 4.5 scenario was used in this study to assess climate change effects from Historical (1985–2014) to Near Future (2015–2050), Mid Future (2051–2070) and Far Future (2071–2100). IDF curves indicate rising rainfall intensities from baseline to far-future scenarios. MOLUSCE plugin in QGIS was used to anticipate land use changes in 2050, 2070 and 2100. LULC maps from 2014 to 2100 show significant urban expansion, marked by increased built-up areas and reduced forest cover. Impervious surfaces in the Bhubaneswar Municipality Corporation are expected to rise from 51.28% to 81.12%, while in the Extended Bhubaneswar Development Authority zone, they are projected to increase from 16.37% to 34.52% by 2100. Storm Water Management Model (SWMM) estimates surface runoff, revealing a consistent rise in flow rates across return periods, indicating a high risk of urban flooding. For Flood Inundation Mapping (FIM), the Hydrologic Engineering Center's -River Analysis System (HEC-RAS) was utilized to assess flood depth and extent across near, mid, and far-future scenarios, with a consistent increase in flood-prone zones across return periods. Vulnerability assessments across various return periods identify specific areas, including various wards of Bhubaneswar as consistently vulnerable. Maximum flood depths from inundation mapping was found to be 0.752 m during the baseline period, increasing to 0.960 m in the near future, 1.08 m in the mid-future, and 1.18 m in the far future for 100 year return period. Additionally, Nuagaon, Lingipur and other areas face increasing flood risks with longer return periods. These findings offer vital insights for officials to develop targeted flood mitigation strategies and enhance resilience in vulnerable areas, crucial for safeguarding the municipality against future flood events. Graphical Abstract
Suggested Citation
Anisha Das & Sanat Nalini Sahoo, 2025.
"Impact of land use and climate change on urban flooding: a case study of Bhubaneswar city in India,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(7), pages 8655-8674, April.
Handle:
RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07130-5
DOI: 10.1007/s11069-025-07130-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07130-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.