IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v63y2006i1p151-168.html
   My bibliography  Save this article

Portfolio optimization in stochastic markets

Author

Listed:
  • U. Çakmak
  • S. Özekici

Abstract

We consider a multiperiod mean-variance model where the model parameters change according to a stochastic market. The mean vector and covariance matrix of the random returns of risky assets all depend on the state of the market during any period where the market process is assumed to follow a Markov chain. Dynamic programming is used to solve an auxiliary problem which, in turn, gives the efficient frontier of the mean-variance formulation. An explicit expression is obtained for the efficient frontier and an illustrative example is given to demonstrate the application of the procedure. Copyright Springer-Verlag 2006

Suggested Citation

  • U. Çakmak & S. Özekici, 2006. "Portfolio optimization in stochastic markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 151-168, February.
  • Handle: RePEc:spr:mathme:v:63:y:2006:i:1:p:151-168
    DOI: 10.1007/s00186-005-0020-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-005-0020-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-005-0020-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elton, Edwin J & Gruber, Martin J, 1974. "On the Optimality of Some Multiperiod Portfolio Selection Criteria," The Journal of Business, University of Chicago Press, vol. 47(2), pages 231-243, April.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    4. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    5. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    6. Bodily, Samuel E. & White, Chelsea C., 1982. "Optimal Consumption and Portfolio Strategies in a Discrete-Time Model with Summary-Dependent Preferences," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(1), pages 1-14, March.
    7. Lukasz Stettner, 1999. "Risk sensitive portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(3), pages 463-474, December.
    8. MOSSIN, Jan, 1968. "Optimal multiperiod portfolio policies," LIDAM Reprints CORE 19, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Ehrlich, Isaac & Hamlen, William Jr., 1995. "Optimal portfolio and consumption decisions in a stochastic environment with precommitment," Journal of Economic Dynamics and Control, Elsevier, vol. 19(3), pages 457-480, April.
    10. Robert J. Elliott & Rogemar S. Mamon, 2003. "A Complete Yield Curve Description Of A Markov Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 317-326.
    11. Chen, Andrew H Y & Jen, Frank C & Zionts, Stanley, 1971. "The Optimal Portfolio Revision Policy," The Journal of Business, University of Chicago Press, vol. 44(1), pages 51-61, January.
    12. Dumas, Bernard & Luciano, Elisa, 1991. "An Exact Solution to a Dynamic Portfolio Choice Problem under Transactions Costs," Journal of Finance, American Finance Association, vol. 46(2), pages 577-595, June.
    13. Jing-Sheng Song & Paul Zipkin, 1993. "Inventory Control in a Fluctuating Demand Environment," Operations Research, INFORMS, vol. 41(2), pages 351-370, April.
    14. Tomasz Bielecki & Daniel Hernández-Hernández & Stanley R. Pliska, 1999. "Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(2), pages 167-188, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Huiling & Chen, Hua, 2015. "Nash equilibrium strategy for a multi-period mean–variance portfolio selection problem with regime switching," Economic Modelling, Elsevier, vol. 46(C), pages 79-90.
    2. Celikyurt, U. & Ozekici, S., 2007. "Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach," European Journal of Operational Research, Elsevier, vol. 179(1), pages 186-202, May.
    3. İ. Altınel & Bora Çekyay & Orhan Feyzioğlu & M. Keskin & Süleyman Özekici, 2011. "Mission-Based Component Testing for Series Systems," Annals of Operations Research, Springer, vol. 186(1), pages 1-22, June.
    4. Benjamín Vallejo Jiménez & Francisco Venegas Martínez, 2017. "Optimal consumption and portfolio rules when the asset price is driven by a time-inhomogeneous Markov modulated fractional Brownian motion with," Economics Bulletin, AccessEcon, vol. 37(1), pages 314-326.
    5. Reza Keykhaei, 2020. "Portfolio selection in a regime switching market with a bankruptcy state and an uncertain exit-time: multi-period mean–variance formulation," Operational Research, Springer, vol. 20(3), pages 1231-1254, September.
    6. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Tendencias y perspectivas de la ciencia financiera: Un artículo de revisión," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    7. Chen, Zhiping & Li, Gang & Zhao, Yonggan, 2014. "Time-consistent investment policies in Markovian markets: A case of mean–variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 293-316.
    8. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Financial Science Trends and Perspectives: A Review Article," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    9. Huiling Wu, 2016. "Optimal Investment-Consumption Strategy under Inflation in a Markovian Regime-Switching Market," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-17, July.
    10. Zhang, Ling & Zhang, Hao & Yao, Haixiang, 2018. "Optimal investment management for a defined contribution pension fund under imperfect information," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 210-224.
    11. Çanakoglu, Ethem & Özekici, Süleyman, 2010. "Portfolio selection in stochastic markets with HARA utility functions," European Journal of Operational Research, Elsevier, vol. 201(2), pages 520-536, March.
    12. Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.
    13. Xiangyu Cui & Jianjun Gao & Yun Shi, 2021. "Multi-period mean–variance portfolio optimization with management fees," Operational Research, Springer, vol. 21(2), pages 1333-1354, June.
    14. Bian, Lihua & Li, Zhongfei & Yao, Haixiang, 2018. "Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 78-94.
    15. Wu, Huiling & Li, Zhongfei, 2012. "Multi-period mean–variance portfolio selection with regime switching and a stochastic cash flow," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 371-384.
    16. Zeng, Yan & Wu, Huiling & Lai, Yongzeng, 2013. "Optimal investment and consumption strategies with state-dependent utility functions and uncertain time-horizon," Economic Modelling, Elsevier, vol. 33(C), pages 462-470.
    17. Ethem Çanakoğlu & Süleyman Özekici, 2009. "Portfolio selection in stochastic markets with exponential utility functions," Annals of Operations Research, Springer, vol. 166(1), pages 281-297, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ethem Çanakoğlu & Süleyman Özekici, 2009. "Portfolio selection in stochastic markets with exponential utility functions," Annals of Operations Research, Springer, vol. 166(1), pages 281-297, February.
    2. Celikyurt, U. & Ozekici, S., 2007. "Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach," European Journal of Operational Research, Elsevier, vol. 179(1), pages 186-202, May.
    3. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    4. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    5. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2015. "On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 528-542.
    6. Çanakoglu, Ethem & Özekici, Süleyman, 2010. "Portfolio selection in stochastic markets with HARA utility functions," European Journal of Operational Research, Elsevier, vol. 201(2), pages 520-536, March.
    7. Dokuchaev, Nikolai, 2010. "Optimality of myopic strategies for multi-stock discrete time market with management costs," European Journal of Operational Research, Elsevier, vol. 200(2), pages 551-556, January.
    8. Briec, Walter & Kerstens, Kristiaan, 2009. "Multi-horizon Markowitz portfolio performance appraisals: A general approach," Omega, Elsevier, vol. 37(1), pages 50-62, February.
    9. Fu, Chenpeng & Lari-Lavassani, Ali & Li, Xun, 2010. "Dynamic mean-variance portfolio selection with borrowing constraint," European Journal of Operational Research, Elsevier, vol. 200(1), pages 312-319, January.
    10. Jianfeng Liang & Shuzhong Zhang & Duan Li, 2008. "Optioned Portfolio Selection: Models And Analysis," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 569-593, October.
    11. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    12. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    13. Yu, Mei & Takahashi, Satoru & Inoue, Hiroshi & Wang, Shouyang, 2010. "Dynamic portfolio optimization with risk control for absolute deviation model," European Journal of Operational Research, Elsevier, vol. 201(2), pages 349-364, March.
    14. Dokuchaev, Nikolai, 2007. "Discrete time market with serial correlations and optimal myopic strategies," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1090-1104, March.
    15. Ying Fu & Kien Ng & Boray Huang & Huei Huang, 2015. "Portfolio optimization with transaction costs: a two-period mean-variance model," Annals of Operations Research, Springer, vol. 233(1), pages 135-156, October.
    16. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2015. "A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function," Annals of Operations Research, Springer, vol. 229(1), pages 121-158, June.
    17. Castellano, Rosella & Cerqueti, Roy, 2014. "Mean–Variance portfolio selection in presence of infrequently traded stocks," European Journal of Operational Research, Elsevier, vol. 234(2), pages 442-449.
    18. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    19. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    20. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:63:y:2006:i:1:p:151-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.