IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v30y2017i3d10.1007_s10959-016-0670-z.html
   My bibliography  Save this article

On Weak Invariance Principles for Partial Sums

Author

Listed:
  • Moritz Jirak

    (Humboldt-Universität zu Berlin)

Abstract

Given a sequence of random functionals $$\bigl \{X_k(u)\bigr \}_{k \in \mathbb {Z}}$$ { X k ( u ) } k ∈ Z , $$u \in \mathbf{I}^d$$ u ∈ I d , $$d \ge 1$$ d ≥ 1 , the normalized partial sums $$\check{S}_{nt}(u) = n^{-1/2}\bigl (X_1(u) + \cdots + X_{\lfloor n t \rfloor }(u)\bigr )$$ S ˇ n t ( u ) = n - 1 / 2 ( X 1 ( u ) + ⋯ + X ⌊ n t ⌋ ( u ) ) , $$t \in [0,1]$$ t ∈ [ 0 , 1 ] and its polygonal version $${S}_{nt}(u)$$ S n t ( u ) are considered under a weak dependence assumption and $$p > 2$$ p > 2 moments. Weak invariance principles in the space of continuous functions and càdlàg functions are established. A particular emphasis is put on the process $$\check{S}_{nt}(\widehat{\theta })$$ S ˇ n t ( θ ^ ) , where $$\widehat{\theta } \xrightarrow {\mathbb {P}} \theta $$ θ ^ → P θ , and weaker moment conditions ( $$p = 2$$ p = 2 if $$d = 1$$ d = 1 ) are assumed.

Suggested Citation

  • Moritz Jirak, 2017. "On Weak Invariance Principles for Partial Sums," Journal of Theoretical Probability, Springer, vol. 30(3), pages 703-728, September.
  • Handle: RePEc:spr:jotpro:v:30:y:2017:i:3:d:10.1007_s10959-016-0670-z
    DOI: 10.1007/s10959-016-0670-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-016-0670-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-016-0670-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71, pages 421-421.
    2. Ghose, Devajyoti & Kroner, Kenneth F., 1995. "The relationship between GARCH and symmetric stable processes: Finding the source of fat tails in financial data," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 225-251, September.
    3. Berkes, István & Hörmann, Siegfried & Horváth, Lajos, 2008. "The functional central limit theorem for a family of GARCH observations with applications," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2725-2730, November.
    4. Dedecker, Jérôme & Doukhan, Paul, 2003. "A new covariance inequality and applications," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 63-80, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    2. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, June.
    3. Gencay, Ramazan & Selcuk, Faruk, 2004. "Extreme value theory and Value-at-Risk: Relative performance in emerging markets," International Journal of Forecasting, Elsevier, vol. 20(2), pages 287-303.
    4. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    5. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    6. W. D. Walls, "undated". "Modeling heavy tails and skewness in film returns," Working Papers 2014-48, Department of Economics, University of Calgary, revised 23 Sep 2014.
    7. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    8. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    9. Alistair Mees & Berndt Pilgram, 2000. "Non-Linear Markov Modelling Using Canonical Variate Analysis: Forecasting Exchange Rate Volatility," Econometric Society World Congress 2000 Contributed Papers 1162, Econometric Society.
    10. Bent Flyvbjerg & Alexander Budzier & Jong Seok Lee & Mark Keil & Daniel Lunn & Dirk W. Bester, 2022. "The Empirical Reality of IT Project Cost Overruns: Discovering A Power-Law Distribution," Papers 2210.01573, arXiv.org.
    11. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    12. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    13. Wesselhöfft, Niels & Härdle, Wolfgang Karl, 2019. "Constrained Kelly portfolios under alpha-stable laws," IRTG 1792 Discussion Papers 2019-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Mercuri, Lorenzo, 2008. "Option pricing in a Garch model with tempered stable innovations," Finance Research Letters, Elsevier, vol. 5(3), pages 172-182, September.
    15. Geman, Helyette, 2002. "Pure jump Levy processes for asset price modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1297-1316, July.
    16. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    17. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    18. Greg Hannsgen, 2011. "Infinite-variance, Alpha-stable Shocks in Monetary SVAR: Final Working Paper Version," Economics Working Paper Archive wp_682, Levy Economics Institute.
    19. Ortobelli, Sergio & Rachev, Svetlozar & Schwartz, Eduardo, 2000. "The Problem of Optimal Asset Allocation with Stable Distributed Returns," University of California at Los Angeles, Anderson Graduate School of Management qt3zd6q86c, Anderson Graduate School of Management, UCLA.
    20. Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:30:y:2017:i:3:d:10.1007_s10959-016-0670-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.