IDEAS home Printed from https://ideas.repec.org/a/spr/josatr/v7y2022i1d10.1186_s41072-022-00110-z.html
   My bibliography  Save this article

Internet of Things enabled real time cold chain monitoring in a container port

Author

Listed:
  • Ahmet Yunus Cil

    (Kocaeli University)

  • Dini Abdurahman

    (Sakarya University)

  • Ibrahim Cil

    (Sakarya University)

Abstract

Purpose Seaports are regarded as significant actors in global logistics and supply chains since a large part of the cargoes carried over the globe are being processed there. When the cold chain broken down during transport and storage in the ports, the humidity, nutrition, temperature and time conditions to be required for the growth of the bacteria occur, and rapid reproduction occurs and the properties of the products are rapidly deteriorating. It is imperative that especially medicines, some chemical substances and foodstuffs need to be transported without breaking the cold chain in the logistics. The monitoring and control of the temperature and humidity level is important in the time period between the loading of these containers in special areas in ports, the loading of freight in open areas, or the loading of freight on roads and railway carriages. For this reason, precise monitoring and control of the system is vital in the port logistics management. Method In this study, an IoT-enabled system is designed for Container Ports by developing software, interface and equipment that will enable remote monitoring of temperature, humidity and other necessary key status parameters. Findings The developed IoT-based system provides audible and visual warning, e-mail and SMS communication, similar to a monitoring screen such as a heart graph monitor, when the instant values of the refrigerated container are transmitted to the database, when the defined upper and lower values are approached. All these data and major change information are archived in the database and retrospective situation analysis and data analysis can be performed. Conclusion Using technologies such as Wireless Sensor Network (WSN) and RFID, an IoT-enabled Cold Chain Logistics system has been proposed that provides real-time monitoring of products in containers at ports, providing DS services to logistics providers and customers. In this context, it was explained how the ambient parameter values were collected in real time using WSN and IEEE 802.15.4, how the collected data was sent to the server via the GSM gateway. In the port scenario, activation devices such as IEEE 802.15.4 and RFID were modeled using the OPNET simulator. The developed model was carried out in accordance with the principles of EPCglobal Gen 2. With the proposed approach, smart solutions provide a smarter flow of information. The results show that IoT- enabled cold chain systems have a great potential for managing, monitoring, receiving and determining abnormal events related to temperature-sensitive products in real time.

Suggested Citation

  • Ahmet Yunus Cil & Dini Abdurahman & Ibrahim Cil, 2022. "Internet of Things enabled real time cold chain monitoring in a container port," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-26, December.
  • Handle: RePEc:spr:josatr:v:7:y:2022:i:1:d:10.1186_s41072-022-00110-z
    DOI: 10.1186/s41072-022-00110-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41072-022-00110-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s41072-022-00110-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonard Heilig & Eduardo Lalla-Ruiz & Stefan Voß, 2017. "Digital transformation in maritime ports: analysis and a game theoretic framework," Netnomics, Springer, vol. 18(2), pages 227-254, December.
    2. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    3. Markus Fruth & Frank Teuteberg, 2017. "Digitization in maritime logistics—What is there and what is missing?," Cogent Business & Management, Taylor & Francis Journals, vol. 4(1), pages 1411066-141, January.
    4. Clott, Christopher & Hartman, Bruce C., 2016. "Supply chain integration, landside operations and port accessibility in metropolitan Chicago," Journal of Transport Geography, Elsevier, vol. 51(C), pages 130-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Čerin & Bojan Beškovnik, 2023. "Enhancing Sustainability through the Development of Port Communication Systems: A Case Study of the Port of Koper," Sustainability, MDPI, vol. 16(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tijan, Edvard & Jović, Marija & Aksentijević, Saša & Pucihar, Andreja, 2021. "Digital transformation in the maritime transport sector," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    2. Vairetti, Carla & González-Ramírez, Rosa G. & Maldonado, Sebastián & Álvarez, Claudio & Voβ, Stefan, 2019. "Facilitating conditions for successful adoption of inter-organizational information systems in seaports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 333-350.
    3. Schnelle, Johannes & Schröder, Meike & Kersten, Wolfgang, 2022. "Framework for the adoption of blockchain in maritime cold chains," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 121-148, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Chandra Prakash Garg & Vishal Kashav & Xuemuge Wang, 2023. "Evaluating sustainability factors of green ports in China under fuzzy environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7795-7821, August.
    5. Ursavas, Evrim & Zhu, Stuart X., 2016. "Optimal policies for the berth allocation problem under stochastic nature," European Journal of Operational Research, Elsevier, vol. 255(2), pages 380-387.
    6. Briskorn, Dirk & Drexl, Andreas & Hartmann, Sönke, 2005. "Inventory based dispatching of automated guided vehicles on container terminals," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 596, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Bortfeldt, Andreas & Forster, Florian, 2012. "A tree search procedure for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 217(3), pages 531-540.
    8. Laima Gerlitz & Christopher Meyer, 2021. "Small and Medium-Sized Ports in the TEN-T Network and Nexus of Europe’s Twin Transition: The Way towards Sustainable and Digital Port Service Ecosystems," Sustainability, MDPI, vol. 13(8), pages 1-24, April.
    9. Maloni, Michael J. & Jackson, Eric C., 2007. "Stakeholder Contributions to Container Port Capacity: A Survey of Port Authorities," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 46(1).
    10. Yingyi Huang & Yuliya Mamatok & Chun Jin, 2021. "Decision-making instruments for container seaport sustainable development: management platform and system dynamics model," Environment Systems and Decisions, Springer, vol. 41(2), pages 212-226, June.
    11. J Blazewicz & T C E Cheng & M Machowiak & C Oguz, 2011. "Berth and quay crane allocation: a moldable task scheduling model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1189-1197, July.
    12. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    13. Kumawat, Govind Lal & Roy, Debjit & De Koster, René & Adan, Ivo, 2021. "Stochastic modeling of parallel process flows in intra-logistics systems: Applications in container terminals and compact storage systems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 159-176.
    14. Joanna Miklinska, 2017. "Development Of The Intermodal Market In Poland From The Perspective Of Cargo Handling Operations In International Supply Chains – Selected Issues," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 17, pages 233-249.
    15. Hani Alyami & Paul Tae-Woo Lee & Zaili Yang & Ramin Riahi & Stephen Bonsall & Jin Wang, 2014. "An advanced risk analysis approach for container port safety evaluation," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(7), pages 634-650, December.
    16. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    17. Tierney, Kevin & Voß, Stefan & Stahlbock, Robert, 2014. "A mathematical model of inter-terminal transportation," European Journal of Operational Research, Elsevier, vol. 235(2), pages 448-460.
    18. Zhongbin Zhao & Xifu Wang & Suxin Cheng & Wei Liu & Lijun Jiang, 2022. "A New Synchronous Handling Technology of Double Stack Container Trains in Sea-Rail Intermodal Terminals," Sustainability, MDPI, vol. 14(18), pages 1, September.
    19. Lennart Zey & Dirk Briskorn & Nils Boysen, 2022. "Twin-crane scheduling during seaside workload peaks with a dedicated handshake area," Journal of Scheduling, Springer, vol. 25(1), pages 3-34, February.
    20. Nexhat Kapidani & Sanja Bauk & Innocent E. Davidson, 2020. "Digitalization in Developing Maritime Business Environments towards Ensuring Sustainability," Sustainability, MDPI, vol. 12(21), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:josatr:v:7:y:2022:i:1:d:10.1186_s41072-022-00110-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.