IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v217y2012i3p531-540.html
   My bibliography  Save this article

A tree search procedure for the container pre-marshalling problem

Author

Listed:
  • Bortfeldt, Andreas
  • Forster, Florian

Abstract

In the container pre-marshalling problem (CPMP) n items are given that belong to G different item groups (g=1,…,G) and that are piled up in up to S stacks with a maximum stack height H. A move can shift one item from one stack to another one. A sequence of moves of minimum length has to be determined that transforms the initial item distribution so that in each of the stacks the items are sorted by their group index g in descending order. The CPMP occurs frequently in container terminals of seaports. It has to be solved when export containers, piled up in stacks, are sorted in a pre-marshalling process so that they can be loaded afterwards onto a ship faster and more efficiently. This article presents a heuristic tree search procedure for the CPMP. The procedure is compared to solution approaches for the CPMP that were published so far and turns out to be very competitive. Moreover, computational results for new and difficult CPMP instances are presented.

Suggested Citation

  • Bortfeldt, Andreas & Forster, Florian, 2012. "A tree search procedure for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 217(3), pages 531-540.
  • Handle: RePEc:eee:ejores:v:217:y:2012:i:3:p:531-540
    DOI: 10.1016/j.ejor.2011.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711009040
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kap Hwan & Park, Young Man & Ryu, Kwang-Ryul, 2000. "Deriving decision rules to locate export containers in container yards," European Journal of Operational Research, Elsevier, vol. 124(1), pages 89-101, July.
    2. Hwan Kim, Kap & Bae Kim, Hong, 1999. "Segregating space allocation models for container inventories in port container terminals," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 415-423, March.
    3. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    2. repec:eee:ejores:v:267:y:2018:i:2:p:467-477 is not listed on IDEAS
    3. repec:eee:transe:v:103:y:2017:i:c:p:17-31 is not listed on IDEAS
    4. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    5. Raka Jovanovic & Milan Tuba & Stefan Voß, 2017. "A multi-heuristic approach for solving the pre-marshalling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 1-28, March.
    6. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    7. Wang, Ning & Jin, Bo & Lim, Andrew, 2015. "Target-guided algorithms for the container pre-marshalling problem," Omega, Elsevier, vol. 53(C), pages 67-77.
    8. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    9. Zehendner, Elisabeth & Feillet, Dominique & Jaillet, Patrick, 2017. "An algorithm with performance guarantee for the Online Container Relocation Problem," European Journal of Operational Research, Elsevier, vol. 259(1), pages 48-62.
    10. repec:eee:ejores:v:264:y:2018:i:1:p:165-180 is not listed on IDEAS
    11. Wang, Ning & Jin, Bo & Zhang, Zizhen & Lim, Andrew, 2017. "A feasibility-based heuristic for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 256(1), pages 90-101.
    12. Yu, Mingzhu & Qi, Xiangtong, 2013. "Storage space allocation models for inbound containers in an automatic container terminal," European Journal of Operational Research, Elsevier, vol. 226(1), pages 32-45.
    13. Jin, Bo & Zhu, Wenbin & Lim, Andrew, 2015. "Solving the container relocation problem by an improved greedy look-ahead heuristic," European Journal of Operational Research, Elsevier, vol. 240(3), pages 837-847.
    14. Boysen, Nils & Emde, Simon, 2016. "The parallel stack loading problem to minimize blockages," European Journal of Operational Research, Elsevier, vol. 249(2), pages 618-627.
    15. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Zehendner, Elisabeth & Caserta, Marco & Feillet, Dominique & Schwarze, Silvia & Voß, Stefan, 2015. "An improved mathematical formulation for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 245(2), pages 415-422.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:217:y:2012:i:3:p:531-540. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.