IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v343y2024i3d10.1007_s10479-021-04507-0.html
   My bibliography  Save this article

Yard truck retrofitting and deployment for hazardous material transportation in green ports

Author

Listed:
  • Qian Zhang

    (Shanghai University)

  • Shuaian Wang

    (The Hong Kong Polytechnic University)

  • Lu Zhen

    (Shanghai University)

Abstract

In the design of green ports, the strategic decision on what types of container transportation equipment are appropriate is extremely important. Yard trucks (YTs) are indispensable in container transportation. In this paper, we propose a YT retrofitting and deployment problem that considers hazardous material transportation in green ports. A stochastic mixed-integer programming model is developed to minimize the costs of purchasing, retrofitting, and chartering YTs and the operation costs during the planning horizon. An enhanced Benders decomposition based on a Lagrangian relaxation algorithm is developed to solve the model. We conduct numerical experiments to verify the effectiveness of the proposed algorithms. We find that the larger free carbon emission quotas provided to enterprises by the government are not always an optimum solution. This research also provides suggestions that can inform decisions about YT retrofitting and deployment and that can contribute to the sustainable development of green ports.

Suggested Citation

  • Qian Zhang & Shuaian Wang & Lu Zhen, 2024. "Yard truck retrofitting and deployment for hazardous material transportation in green ports," Annals of Operations Research, Springer, vol. 343(3), pages 981-1012, December.
  • Handle: RePEc:spr:annopr:v:343:y:2024:i:3:d:10.1007_s10479-021-04507-0
    DOI: 10.1007/s10479-021-04507-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04507-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04507-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoju Zhang & Qingcheng Zeng & Zhongzhen Yang, 2019. "Optimization of truck appointments in container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 125-145, March.
    2. Nilay Noyan & Burcu Balcik & Semih Atakan, 2016. "A Stochastic Optimization Model for Designing Last Mile Relief Networks," Transportation Science, INFORMS, vol. 50(3), pages 1092-1113, August.
    3. Hyangsook Lee & Hoang Thai Pham & Chihoon Kim & Kangdae Lee, 2019. "A Study on Emissions from Drayage Trucks in the Port City-Focusing on the Port of Incheon," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    4. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    5. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    6. Tongdan Jin & Tianqin Shi & Taeho Park, 2018. "The quest for carbon-neutral industrial operations: renewable power purchase versus distributed generation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5723-5735, September.
    7. Gopalakrishnan Easwaran & Halit Üster, 2009. "Tabu Search and Benders Decomposition Approaches for a Capacitated Closed-Loop Supply Chain Network Design Problem," Transportation Science, INFORMS, vol. 43(3), pages 301-320, August.
    8. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    9. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    10. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    11. Hanyu Lu & Lufei Huang, 2021. "Optimization of Shore Power Deployment in Green Ports Considering Government Subsidies," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    12. Iris, Çağatay & Lam, Jasmine Siu Lee, 2021. "Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty," Omega, Elsevier, vol. 103(C).
    13. Adrián Ramírez-Nafarrate & Rosa G. González-Ramírez & Neale R. Smith & Roberto Guerra-Olivares & Stefan Voß, 2017. "Impact on yard efficiency of a truck appointment system for a port terminal," Annals of Operations Research, Springer, vol. 258(2), pages 195-216, November.
    14. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    2. Huang, Mingzhong & He, Junliang & Yu, Hang & Yan, Wei & Tan, Caimao, 2024. "Improved Benders decomposition for stack-based yard template generation in an automated container terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    3. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    4. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    5. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    6. Daniel Baena & Jordi Castro & Antonio Frangioni, 2020. "Stabilized Benders Methods for Large-Scale Combinatorial Optimization, with Application to Data Privacy," Management Science, INFORMS, vol. 66(7), pages 3051-3068, July.
    7. Gruson, Matthieu & Cordeau, Jean-François & Jans, Raf, 2021. "Benders decomposition for a stochastic three-level lot sizing and replenishment problem with a distribution structure," European Journal of Operational Research, Elsevier, vol. 291(1), pages 206-217.
    8. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    9. Rodríguez, Jesús A. & Anjos, Miguel F. & Côté, Pascal & Desaulniers, Guy, 2021. "Accelerating Benders decomposition for short-term hydropower maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 289(1), pages 240-253.
    10. Simon Thevenin & Yossiri Adulyasak & Jean-François Cordeau, 2022. "Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3151-3169, November.
    11. Nathan Sudermann‐Merx & Steffen Rebennack & Christian Timpe, 2021. "Crossing Minimal Edge‐Constrained Layout Planning using Benders Decomposition," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3429-3447, October.
    12. N. Beheshti Asl & S. A. MirHassani, 2019. "Accelerating benders decomposition: multiple cuts via multiple solutions," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 806-826, April.
    13. Kiho Seo & Seulgi Joung & Chungmok Lee & Sungsoo Park, 2022. "A Closest Benders Cut Selection Scheme for Accelerating the Benders Decomposition Algorithm," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2804-2827, September.
    14. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    15. Camilo Ortiz-Astorquiza & Jean-François Cordeau & Emma Frejinger, 2021. "The Locomotive Assignment Problem with Distributed Power at the Canadian National Railway Company," Transportation Science, INFORMS, vol. 55(2), pages 510-531, March.
    16. Aghalari, Amin & Nur, Farjana & Marufuzzaman, Mohammad, 2020. "A Bender’s based nested decomposition algorithm to solve a stochastic inland waterway port management problem considering perishable product," International Journal of Production Economics, Elsevier, vol. 229(C).
    17. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    18. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    19. Aghalari, Amin & Nur, Farjana & Marufuzzaman, Mohammad, 2021. "Solving a stochastic inland waterway port management problem using a parallelized hybrid decomposition algorithm," Omega, Elsevier, vol. 102(C).
    20. Attari, Mahdi Yousefi Nejad & Torkayesh, Ali Ebadi, 2018. "Developing benders decomposition algorithm for a green supply chain network of mine industry: Case of Iranian mine industry," Operations Research Perspectives, Elsevier, vol. 5(C), pages 371-382.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:343:y:2024:i:3:d:10.1007_s10479-021-04507-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.