IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v207y2025i3d10.1007_s10957-025-02806-1.html
   My bibliography  Save this article

Approximate Cores of Submodular Cost Set Cover Games

Author

Listed:
  • Qingqin Nong

    (Ocean University of China)

  • Jingyu Yao

    (Ocean University of China)

  • Xin Qin

    (Ocean University of China)

  • Suning Gong

    (Qingdao University)

  • Qizhi Fang

    (Ocean University of China)

Abstract

This paper considers approximate cores of submodular cost set cover games. A submodular cost set cover game involves a finite set of players, an index set, and a submodular function defined on the index set. Each element in the index set corresponds to a subset of the player set and the union of all these subsets equals the entire player set. Given a subset of players, call a subset of the index set a cover of it if the union of the corresponding sets contains all the players in the subset. For any subset of players, its cost is the minimum submodular function value over all possible set covers of the subset. In this paper, we study the non-emptiness property of the approximate cores of submodular cost set cover games from the perspective of the integrality gap of the mathematical program for submodular cost set cover optimization problems.

Suggested Citation

  • Qingqin Nong & Jingyu Yao & Xin Qin & Suning Gong & Qizhi Fang, 2025. "Approximate Cores of Submodular Cost Set Cover Games," Journal of Optimization Theory and Applications, Springer, vol. 207(3), pages 1-15, December.
  • Handle: RePEc:spr:joptap:v:207:y:2025:i:3:d:10.1007_s10957-025-02806-1
    DOI: 10.1007/s10957-025-02806-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02806-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02806-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:207:y:2025:i:3:d:10.1007_s10957-025-02806-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.