IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v204y2025i2d10.1007_s10957-024-02581-5.html
   My bibliography  Save this article

First-Order Methods for Nonnegative Trigonometric Matrix Polynomials

Author

Listed:
  • Daniel Cederberg

    (Stanford University)

Abstract

Optimization problems over the cone of nonnegative trigonometric matrix polynomials are common in signal processing. Traditionally, those problems are formulated and solved as semidefinite programs (SDPs). However, the SDP formulation increases the dimension of the problem, resulting in large problems that are challenging to solve. In this paper we propose first-order methods that circumvent the SDP formulation and instead optimize directly within the space of trigonometric matrix polynomials. Our methods are based on a particular Bregman proximal operator. We apply our approach to two fundamental signal processing applications: to rectify a power spectrum that fails to be nonnegative and for graphical modeling of Gaussian time series. Numerical experiments demonstrate that our methods are orders of magnitude faster than an interior-point solver applied to the corresponding SDPs.

Suggested Citation

  • Daniel Cederberg, 2025. "First-Order Methods for Nonnegative Trigonometric Matrix Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 204(2), pages 1-28, February.
  • Handle: RePEc:spr:joptap:v:204:y:2025:i:2:d:10.1007_s10957-024-02581-5
    DOI: 10.1007/s10957-024-02581-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02581-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02581-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    2. Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
    3. Brillinger, David R., 1996. "Remarks Concerning Graphical Models for Time Series and Point Processes," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 16(1), November.
    4. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    5. GENIN, Yves & HACHEZ, Yvan & NESTEROV, Yu. & VAN DOOREN, Paul, 2003. "Optimizat problems over positive pseudopolynomial matrices," LIDAM Reprints CORE 1622, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Butler & Roy H. Kwon, 2023. "Efficient differentiable quadratic programming layers: an ADMM approach," Computational Optimization and Applications, Springer, vol. 84(2), pages 449-476, March.
    2. Enzo Busseti, 2019. "Derivative of a Conic Problem with a Unique Solution," Papers 1903.05753, arXiv.org, revised Mar 2019.
    3. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    4. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    5. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    6. Andrew Butler & Roy Kwon, 2021. "Efficient differentiable quadratic programming layers: an ADMM approach," Papers 2112.07464, arXiv.org.
    7. Jianming Pan & Zeqi Ye & Xiao Yang & Xu Yang & Weiqing Liu & Lewen Wang & Jiang Bian, 2024. "BPQP: A Differentiable Convex Optimization Framework for Efficient End-to-End Learning," Papers 2411.19285, arXiv.org, revised Dec 2024.
    8. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Bayesian Graphical Models for STructural Vector Autoregressive Processes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 357-386, March.
    9. Sun, Qinghe & Chen, Li & Meng, Qiang, 2022. "Evaluating port efficiency dynamics: A risk-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 333-347.
    10. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
    11. Run Chen & Andrew L. Liu, 2021. "A distributed algorithm for high-dimension convex quadratically constrained quadratic programs," Computational Optimization and Applications, Springer, vol. 80(3), pages 781-830, December.
    12. Gorban, Alexander N. & Smirnova, Elena V. & Tyukina, Tatiana A., 2010. "Correlations, risk and crisis: From physiology to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3193-3217.
    13. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    14. Nikitas Rontsis & Paul Goulart & Yuji Nakatsukasa, 2022. "Efficient Semidefinite Programming with Approximate ADMM," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 292-320, January.
    15. Bo Yang & Xinyuan Zhao & Xudong Li & Defeng Sun, 2025. "An Accelerated Proximal Alternating Direction Method of Multipliers for Optimal Decentralized Control of Uncertain Systems," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-37, January.
    16. Abdelwahab Allali & Amor Oueslati & Abdelwahed Trabelsi, 2011. "Detection of Information Flow in Major International Financial Markets by Interactivity Network Analysis," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(3), pages 319-344, September.
    17. Michael Garstka & Mark Cannon & Paul Goulart, 2021. "COSMO: A Conic Operator Splitting Method for Convex Conic Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 779-810, September.
    18. Enzo Busseti & Walaa M. Moursi & Stephen Boyd, 2019. "Solution refinement at regular points of conic problems," Computational Optimization and Applications, Springer, vol. 74(3), pages 627-643, December.
    19. Alberto Marchi, 2022. "On a primal-dual Newton proximal method for convex quadratic programs," Computational Optimization and Applications, Springer, vol. 81(2), pages 369-395, March.
    20. Eckardt, Matthias & González, Jonatan A. & Mateu, Jorge, 2021. "Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:204:y:2025:i:2:d:10.1007_s10957-024-02581-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.