IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v161y2014i1d10.1007_s10957-012-0127-1.html
   My bibliography  Save this article

Asymptotic Analysis of Sample Average Approximation for Stochastic Optimization Problems with Joint Chance Constraints via Conditional Value at Risk and Difference of Convex Functions

Author

Listed:
  • Hailin Sun

    (Harbin Institute of Technology)

  • Huifu Xu

    (University of Southampton)

  • Yong Wang

    (Harbin Institute of Technology)

Abstract

Conditional Value at Risk (CVaR) has been recently used to approximate a chance constraint. In this paper, we study the convergence of stationary points, when sample average approximation (SAA) method is applied to a CVaR approximated joint chance constrained stochastic minimization problem. Specifically, we prove under some moderate conditions that optimal solutions and stationary points, obtained from solving sample average approximated problems, converge with probability one to their true counterparts. Moreover, by exploiting the recent results on large deviation of random functions and sensitivity results for generalized equations, we derive exponential rate of convergence of stationary points. The discussion is also extended to the case, when CVaR approximation is replaced by a difference of two convex functions (DC-approximation). Some preliminary numerical test results are reported.

Suggested Citation

  • Hailin Sun & Huifu Xu & Yong Wang, 2014. "Asymptotic Analysis of Sample Average Approximation for Stochastic Optimization Problems with Joint Chance Constraints via Conditional Value at Risk and Difference of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 257-284, April.
  • Handle: RePEc:spr:joptap:v:161:y:2014:i:1:d:10.1007_s10957-012-0127-1
    DOI: 10.1007/s10957-012-0127-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0127-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0127-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    2. Stephen M. Robinson, 1996. "Analysis of Sample-Path Optimization," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 513-528, August.
    3. Papageorgiou, Nikolaos S., 1985. "On the theory of Banach space valued multifunctions. 1. Integration and conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 17(2), pages 185-206, October.
    4. F. W. Meng & J. Sun & M. Goh, 2010. "Stochastic Optimization Problems with CVaR Risk Measure and Their Sample Average Approximation," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 399-418, August.
    5. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    6. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    7. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, December.
    8. Daniel Ralph & Huifu Xu, 2011. "Convergence of Stationary Points of Sample Average Two-Stage Stochastic Programs: A Generalized Equation Approach," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 568-592, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    2. Álvaro Porras & Concepción Domínguez & Juan Miguel Morales & Salvador Pineda, 2023. "Tight and Compact Sample Average Approximation for Joint Chance-Constrained Problems with Applications to Optimal Power Flow," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1454-1469, November.
    3. Liu, Zhimin & Qu, Shaojian & Goh, Mark & Wu, Zhong & Huang, Ripeng & Ma, Gang, 2020. "Two-stage mean-risk stochastic optimization model for port cold storage capacity under pelagic fishery yield uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. Lukáš Adam & Martin Branda, 2016. "Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 419-436, August.
    5. Sojung Kim & Stefan Weber, 2020. "Simulation Methods for Robust Risk Assessment and the Distorted Mix Approach," Papers 2009.03653, arXiv.org, revised Jan 2022.
    6. Arash Gourtani & Tri-Dung Nguyen & Huifu Xu, 2020. "A distributionally robust optimization approach for two-stage facility location problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 141-172, June.
    7. Lukáš Adam & Martin Branda & Holger Heitsch & René Henrion, 2020. "Solving joint chance constrained problems using regularization and Benders’ decomposition," Annals of Operations Research, Springer, vol. 292(2), pages 683-709, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huifu Xu & Dali Zhang, 2013. "Stochastic Nash equilibrium problems: sample average approximation and applications," Computational Optimization and Applications, Springer, vol. 55(3), pages 597-645, July.
    2. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    3. Victor DeMiguel & Huifu Xu, 2009. "A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application," Operations Research, INFORMS, vol. 57(5), pages 1220-1235, October.
    4. repec:cte:wsrepe:38369 is not listed on IDEAS
    5. Huifu Xu & Dali Zhang, 2012. "Monte Carlo methods for mean-risk optimization and portfolio selection," Computational Management Science, Springer, vol. 9(1), pages 3-29, February.
    6. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Tan, Zhijia, 2013. "Risk management in liner ship fleet deployment: A joint chance constrained programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 1-12.
    7. Daniel Ralph & Huifu Xu, 2011. "Convergence of Stationary Points of Sample Average Two-Stage Stochastic Programs: A Generalized Equation Approach," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 568-592, August.
    8. Zheng, Xiaojin & Sun, Xiaoling & Li, Duan & Cui, Xueting, 2012. "Lagrangian decomposition and mixed-integer quadratic programming reformulations for probabilistically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 221(1), pages 38-48.
    9. Zhaolin Hu & Jing Cao & L. Jeff Hong, 2012. "Robust Simulation of Global Warming Policies Using the DICE Model," Management Science, INFORMS, vol. 58(12), pages 2190-2206, December.
    10. Yuan Yuan & Zukui Li & Biao Huang, 2017. "Robust optimization approximation for joint chance constrained optimization problem," Journal of Global Optimization, Springer, vol. 67(4), pages 805-827, April.
    11. Feng Shan & Liwei Zhang & Xiantao Xiao, 2014. "A Smoothing Function Approach to Joint Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 181-199, October.
    12. Stevanovic Dalibor, 2016. "Common time variation of parameters in reduced-form macroeconomic models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 159-183, April.
    13. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    14. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    15. A. Fadlelmawla & M. Al-Otaibi, 2005. "Analysis of the Water Resources Status in Kuwait," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 555-570, October.
    16. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    17. Duan, Jinyun & Li, Chenwei & Xu, Yue & Wu, Chia-Huei, 2017. "Transformational leadership and employee voice behavior: a Pygmalion mechanism," LSE Research Online Documents on Economics 68035, London School of Economics and Political Science, LSE Library.
    18. Hota, Monali & Bartsch, Fabian, 2019. "Consumer socialization in childhood and adolescence: Impact of psychological development and family structure," Journal of Business Research, Elsevier, vol. 105(C), pages 11-20.
    19. Abernethy, Margaret A. & Vagnoni, Emidia, 2004. "Power, organization design and managerial behaviour," Accounting, Organizations and Society, Elsevier, vol. 29(3-4), pages 207-225.
    20. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    21. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:161:y:2014:i:1:d:10.1007_s10957-012-0127-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.