IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v54y2025i1d10.1007_s00182-025-00940-8.html
   My bibliography  Save this article

A general model for multi-parameter weighted voting games

Author

Listed:
  • Sanjay Bhattacherjee

    (University of Kent)

  • Satya R. Chakravarty

    (Independent Researcher)

  • Palash Sarkar

    (Indian Statistical Institute)

Abstract

We introduce a new and general model for voting games with multiple weight vectors. Previously studied models are obtained as special cases of the new model. In comparison to earlier models, games have more compact representation in the new model. In particular, we show that a previously well known example of a game having dimension exponential in the number of players can be represented in the new model using only two weight vectors. Further, we identify a new sub-class of games, that we call hyperplane voting games, which are compactly expressible in the new model, but not necessarily so in the previous models. For games represented in the new model, we present dynamic programming algorithms for determining various quantities required for computing different voting power indices. Methods for computing the number of minimal winning coalitions under various restrictions were not previously known even for the earlier models.

Suggested Citation

  • Sanjay Bhattacherjee & Satya R. Chakravarty & Palash Sarkar, 2025. "A general model for multi-parameter weighted voting games," International Journal of Game Theory, Springer;Game Theory Society, vol. 54(1), pages 1-36, June.
  • Handle: RePEc:spr:jogath:v:54:y:2025:i:1:d:10.1007_s00182-025-00940-8
    DOI: 10.1007/s00182-025-00940-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-025-00940-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00182-025-00940-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deineko, Vladimir G. & Woeginger, Gerhard J., 2006. "On the dimension of simple monotonic games," European Journal of Operational Research, Elsevier, vol. 170(1), pages 315-318, April.
    2. Wilms, Ingo, 2020. "Dynamic programming algorithms for computing power indices in weighted multi-tier games," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 175-192.
    3. Einy, Ezra & Peleg, Bezalel, 1991. "Linear measures of inequality for cooperative games," Journal of Economic Theory, Elsevier, vol. 53(2), pages 328-344, April.
    4. Algaba, E. & Bilbao, J.M. & Fernandez, J.R., 2007. "The distribution of power in the European Constitution," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1752-1766, February.
    5. Algaba, E. & Bilbao, J. M. & Fernandez Garcia, J. R. & Lopez, J. J., 2003. "Computing power indices in weighted multiple majority games," Mathematical Social Sciences, Elsevier, vol. 46(1), pages 63-80, August.
    6. Bolus, Stefan, 2011. "Power indices of simple games and vector-weighted majority games by means of binary decision diagrams," European Journal of Operational Research, Elsevier, vol. 210(2), pages 258-272, April.
    7. Chakravarty,Satya R. & Mitra,Manipushpak & Sarkar,Palash, 2015. "A Course on Cooperative Game Theory," Cambridge Books, Cambridge University Press, number 9781107058798, Enero-Abr.
    8. Chaowen Yu, 2022. "Hyperplane games, prize games and NTU values," Theory and Decision, Springer, vol. 93(2), pages 359-370, September.
    9. Josep Freixas & William S. Zwicker, 2003. "Weighted voting, abstention, and multiple levels of approval," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 21(3), pages 399-431, December.
    10. Maschler, M & Owen, G, 1989. "The Consistent Shapley Value for Hyperplane Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(4), pages 389-407.
    11. Weber, Matthias, 2016. "Two-tier voting: Measuring inequality and specifying the inverse power problem," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 40-45.
    12. Rae, Douglas W., 1969. "Decision-Rules and Individual Values in Constitutional Choice," American Political Science Review, Cambridge University Press, vol. 63(1), pages 40-56, March.
    13. Alonso-Meijide, J.M. & Bilbao, J.M. & Casas-Méndez, B. & Fernández, J.R., 2009. "Weighted multiple majority games with unions: Generating functions and applications to the European Union," European Journal of Operational Research, Elsevier, vol. 198(2), pages 530-544, October.
    14. Guemmegne, Juliette T. & Pongou, Roland, 2014. "A policy-based rationalization of collective rules: Dimensionality, specialized houses, and decentralized authority," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 182-193.
    15. Leech, Dennis, 2002. "Designing the Voting System for the Council of the European Union," Public Choice, Springer, vol. 113(3-4), pages 437-464, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacherjee, Sanjay & Chakravarty, Satya R. & Sarkar, Palash, 2022. "A General Model for Multi-Parameter Weighted Voting Games," MPRA Paper 115407, University Library of Munich, Germany.
    2. Bhattacherjee, Sanjay & Sarkar, Palash, 2017. "Correlation and inequality in weighted majority voting games," MPRA Paper 83168, University Library of Munich, Germany.
    3. Somdeb Lahiri, 2021. "Pattanaik's axioms and the existence of winners preferred with probability at least half," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 109-122.
    4. Wilms, Ingo, 2020. "Dynamic programming algorithms for computing power indices in weighted multi-tier games," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 175-192.
    5. Pongou, Roland & Tchantcho, Bertrand & Tedjeugang, Narcisse, 2014. "Power theories for multi-choice organizations and political rules: Rank-order equivalence," Operations Research Perspectives, Elsevier, vol. 1(1), pages 42-49.
    6. Michela Chessa, 2014. "A generating functions approach for computing the Public Good index efficiently," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 658-673, July.
    7. Sylvain Béal & Marc Deschamps & Mostapha Diss & Issofa Moyouwou, 2022. "Inconsistent weighting in weighted voting games," Public Choice, Springer, vol. 191(1), pages 75-103, April.
    8. Josep Freixas & Sascha Kurz, 2014. "On $${\alpha }$$ α -roughly weighted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(3), pages 659-692, August.
    9. Freixas, Josep & Kurz, Sascha, 2013. "The golden number and Fibonacci sequences in the design of voting structures," European Journal of Operational Research, Elsevier, vol. 226(2), pages 246-257.
    10. A. Saavedra-Nieves, 2023. "On stratified sampling for estimating coalitional values," Annals of Operations Research, Springer, vol. 320(1), pages 325-353, January.
    11. A. Saavedra-Nieves & M. G. Fiestras-Janeiro, 2021. "Sampling methods to estimate the Banzhaf–Owen value," Annals of Operations Research, Springer, vol. 301(1), pages 199-223, June.
    12. Molinero, Xavier & Riquelme, Fabián & Serna, Maria, 2015. "Forms of representation for simple games: Sizes, conversions and equivalences," Mathematical Social Sciences, Elsevier, vol. 76(C), pages 87-102.
    13. D'ora Gr'eta Petr'oczy & L'aszl'o Csat'o, 2023. "Voting power in the Council of the European Union: A comprehensive sensitivity analysis," Papers 2312.16878, arXiv.org, revised Apr 2025.
    14. Matthew Gould & Matthew D. Rablen, 2013. "Equitable Representation in the Councils of the United Nations: Theory and Application," CEDI Discussion Paper Series 13-07, Centre for Economic Development and Institutions(CEDI), Brunel University.
    15. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    16. Le Breton, Michel & Lepelley, Dominique & Macé, Antonin & Merlin, Vincent, 2017. "Le mécanisme optimal de vote au sein du conseil des représentants d’un système fédéral," L'Actualité Economique, Société Canadienne de Science Economique, vol. 93(1-2), pages 203-248, Mars-Juin.
    17. Leech, Dennis & Aziz, Haris, 2007. "The Double Majority Voting Rule of the EU Reform Treaty as a Democratic Ideal for an Enlarging Union : an Appraisal Using Voting Power Analysis," The Warwick Economics Research Paper Series (TWERPS) 824, University of Warwick, Department of Economics.
    18. Stefan Napel & Mika Widgrén, 2006. "The Inter-Institutional Distribution of Power in EU Codecision," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 27(1), pages 129-154, August.
    19. Aguiar, Victor H. & Pongou, Roland & Tondji, Jean-Baptiste, 2018. "A non-parametric approach to testing the axioms of the Shapley value with limited data," Games and Economic Behavior, Elsevier, vol. 111(C), pages 41-63.
    20. Madeleine O. Hosli & Běla Plechanovová & Serguei Kaniovski, 2018. "Vote Probabilities, Thresholds and Actor Preferences: Decision Capacity and the Council of the European Union," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 35(1), pages 31-52, June.

    More about this item

    Keywords

    Weighted majority voting game; Multi-parameter games; Boolean formula; Voting power; Dynamic programming;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:54:y:2025:i:1:d:10.1007_s00182-025-00940-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.