IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness

  • Pierre-André Chiappori

    ()

  • Robert McCann

    ()

  • Lars Nesheim

    ()

Hedonic pricing with quasilinear preferences is shown to be equivalent to stable matching with transferable utilities and a participation constraint, and to an optimal transportation (Monge-Kantorovich) linear programming problem. Optimal assignments in the latter correspond to stable matchings, and to hedonic equilibria. These assignments are shown to exist in great generality; their marginal indirect payoffs with respect to agent type are shown to be unique whenever direct payoffs vary smoothly with type. Under a generalized Spence-Mirrlees condition the assignments are shown to be unique and to be pure, meaning the matching is one-to-one outside a negligible set. For smooth problems set on compact, connected type spaces such as the circle, there is a topological obstruction to purity, but we give a weaker condition still guaranteeing uniqueness of the stable match. An appendix resolves an old problem (# 111) of Birkhoff in probability and statistics [5], by giving a necessary and sufficient condition on the support of a joint probability to guarantee extremality among all joint measures with the same marginals.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s00199-009-0455-z
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Economic Theory.

Volume (Year): 42 (2010)
Issue (Month): 2 (February)
Pages: 317-354

as
in new window

Handle: RePEc:spr:joecth:v:42:y:2010:i:2:p:317-354
Contact details of provider: Web page: http://link.springer.de/link/service/journals/00199/index.htm

Order Information: Web: http://link.springer.de/orders.htm

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Carlier, Guillaume, 2003. "Duality and existence for a class of mass transportation problems and economic applications," Economics Papers from University Paris Dauphine 123456789/6443, Paris Dauphine University.
  2. Neil E. Gretsky & Joseph M. Ostroy & William R. Zame, 1990. "The Nonatomic Assignment Model," UCLA Economics Working Papers 605, UCLA Department of Economics.
  3. James Heckman & Rosa Matzkin & Lars Nesheim, 2005. "Nonparametric estimation of nonadditive hedonic models," CeMMAP working papers CWP03/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  4. Gretsky, Neil E. & Ostroy, Joseph M. & Zame, William R., 1999. "Perfect Competition in the Continuous Assignment Model," Journal of Economic Theory, Elsevier, vol. 88(1), pages 60-118, September.
  5. Roth, Alvin E. & Sotomayor, Marilda, 1992. "Two-sided matching," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 16, pages 485-541 Elsevier.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:42:y:2010:i:2:p:317-354. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

or (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.