IDEAS home Printed from https://ideas.repec.org/a/spr/jecfin/v37y2013i1p100-121.html
   My bibliography  Save this article

Crack spread option pricing with copulas

Author

Listed:
  • Hemantha Herath
  • Pranesh Kumar
  • Amin Amershi

Abstract

A copula-based approach for pricing crack spread options is described. Crack spread options are currently priced assuming joint normal distributions of returns and linear dependence. Statistical evidence indicates that these assumptions are at odds with the empirical data. Furthermore, the unique features of energy commodities, such as mean reversion and seasonality, are ignored in standard models. We develop two copula-based crack spread option models using a simulation approach that address these gaps. Our results indicate that the Gumbel copula and standard models (binomial, and Kirk and Aron ( 1995 )) mis-price a crack spread option and that the Clayton model is more appropriate. We contribute to the energy derivatives literature by illustrating the application of copula models to the pricing of a heating oil–crude oil “crack” spread option. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Hemantha Herath & Pranesh Kumar & Amin Amershi, 2013. "Crack spread option pricing with copulas," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 37(1), pages 100-121, January.
  • Handle: RePEc:spr:jecfin:v:37:y:2013:i:1:p:100-121
    DOI: 10.1007/s12197-011-9171-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s12197-011-9171-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s12197-011-9171-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Berhanu Girma & Albert S. Paulson, 1998. "Seasonality in petroleum futures spreads," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 18(5), pages 581-598, August.
    2. Laurence, Peter & Wang, Tai-Ho, 2009. "Sharp distribution free lower bounds for spread options and the corresponding optimal subreplicating portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 35-47, February.
    3. van den Goorbergh, Rob W.J. & Genest, Christian & Werker, Bas J.M., 2005. "Bivariate option pricing using dynamic copula models," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 101-114, August.
    4. U. Cherubini & E. Luciano, 2002. "Bivariate option pricing with copulas," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 69-85.
    5. Paul Berhanu Girma & Albert S. Paulson, 1999. "Risk arbitrage opportunities in petroleum futures spreads," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(8), pages 931-955, December.
    6. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    7. Eric Pickles & James L. Smith, 1993. "Petroleum Property Valuation: A Binomial Lattice Implementation of Option Pricing Theory," The Energy Journal, , vol. 14(2), pages 1-26, April.
    8. James L. Paddock & Daniel R. Siegel & James L. Smith, 1988. "Option Valuation of Claims on Real Assets: The Case of Offshore Petroleum Leases," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 103(3), pages 479-508.
    9. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 1-12, March.
    10. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    11. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    12. Michael S. Haigh & Matthew T. Holt, 2002. "Crack spread hedging: accounting for time-varying volatility spillovers in the energy futures markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(3), pages 269-289.
    13. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    15. Bardia Kamrad & Peter Ritchken, 1991. "Multinomial Approximating Models for Options with k State Variables," Management Science, INFORMS, vol. 37(12), pages 1640-1652, December.
    16. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    17. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lander, Diane M. & Pinches, George E., 1998. "Challenges to the Practical Implementation of Modeling and Valuing Real Options," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(3, Part 2), pages 537-567.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.
    4. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    5. Carlos de Lamare Bastian-Pinto & Alexandre Paula Silva Ramos & Luiz de Magalhães Ozorio & Luiz Eduardo Teixeira Brandão, 2015. "Uncertainty and Flexibility in the Brazilian Beef Livestock Sector: the Value of the Confinement Option," Brazilian Business Review, Fucape Business School, vol. 12(6), pages 100-120, November.
    6. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138.
    7. Felipe Isaza Cuervo & Sergio Botero Boterob, 2014. "Aplicación de las opciones reales en la toma de decisiones en los mercados de electricidad," Estudios Gerenciales, Universidad Icesi, November.
    8. Unterschultz, James R., 2000. "New Instruments For Co-Ordination And Risk Sharing Within The Canadian Beef Industry," Project Report Series 24046, University of Alberta, Department of Resource Economics and Environmental Sociology.
    9. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    10. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    11. Insley, M.C. & Wirjanto, T.S., 2010. "Contrasting two approaches in real options valuation: Contingent claims versus dynamic programming," Journal of Forest Economics, Elsevier, vol. 16(2), pages 157-176, April.
    12. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
    13. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    14. Carol Alexander & Andrew Scourse, 2004. "Bivariate normal mixture spread option valuation," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 637-648.
    15. de Jong, C.M. & Huisman, R., 2002. "Option Formulas for Mean-Reverting Power Prices with Spikes," ERIM Report Series Research in Management ERS-2002-96-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Ryan Kellogg, 2014. "The Effect of Uncertainty on Investment: Evidence from Texas Oil Drilling," American Economic Review, American Economic Association, vol. 104(6), pages 1698-1734, June.
    17. Bulan, Laarni & Mayer, Christopher & Somerville, C. Tsuriel, 2009. "Irreversible investment, real options, and competition: Evidence from real estate development," Journal of Urban Economics, Elsevier, vol. 65(3), pages 237-251, May.
    18. Sunnevag, Kjell, 1998. "An option pricing approach to exploration licensing strategy," Resources Policy, Elsevier, vol. 24(1), pages 25-38, March.
    19. Philippe Raimbourg & Paul Zimmermann, 2022. "Is normal backwardation normal? Valuing financial futures with a local index-rate covariance," Post-Print hal-04011013, HAL.
    20. Marcel Philipp Müller & Sebastian Stöckl & Steffen Zimmermann & Bernd Heinrich, 2016. "Decision Support for IT Investment Projects," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 58(6), pages 381-396, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecfin:v:37:y:2013:i:1:p:100-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.